Exam 9: Logarithmic and Exponential Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Expand. A ssume that all variables represent positive real numbers. - logd(a8b2c6d3)\log _{d}\left(\frac{a^{8} b^{2}}{c^{6} d^{3}}\right)

(Multiple Choice)
4.7/5
(38)

Solve. Round to the nearest thousandth, if necessary - 34x1=183^{-4 \mathrm{x}-1}=18

(Multiple Choice)
4.9/5
(26)

Use the horizontal-line test to determine whether the function is one to one. -Use the horizontal-line test to determine whether the function is one to one. -

(True/False)
4.7/5
(35)

Solve the equation. - log(2+x)log(x5)=log2\log (2+\mathrm{x})-\log (\mathrm{x}-5)=\log 2

(Multiple Choice)
5.0/5
(36)

Given f(x)f(x) and g(x)g(x) , find the indicated composition and state its domain. - f(x)=4x+4,g(x)=2x+8f(x)=-4 x+4, g(x)=2 x+8 Find (gf)(x)(\mathrm{g} \circ \mathrm{f})(\mathrm{x}) .

(Multiple Choice)
4.7/5
(29)

Solve the equation. - log(x+3)=1logx\log (x+3)=1-\log x

(Multiple Choice)
4.9/5
(34)

For the given functions f(x)f(x) and g(x)g(x) , find (fg)(x)(f \cdot g)(x) or (fg)(x)\left(\frac{f}{g}\right)(x) as indicated. - f(x)=x2+8x+12,g(x)=x+6f(x)=x^{2}+8 x+12, g(x)=x+6 Find (fg)(x)\left(\frac{f}{g}\right)(x) .

(Multiple Choice)
4.9/5
(47)

Find the specified domain -For f(x)=6x2f(x)=\frac{6}{x^{2}} and g(x)=4xg(x)=4-x , what is the domain of fgf \circ g ?

(Multiple Choice)
4.9/5
(27)

Determine whether the functions f(x)f(x) and g(x)g(x) are inverse functions. - f(x)=x9,g(x)=x+9f(x)=x-9, g(x)=x+9

(True/False)
4.9/5
(35)

Graph the given function f(x). Label the vertical asymptote. State the domain and range of the function. -Let f(x)=ln(x5)+15\mathrm{f}(\mathrm{x})=\ln (\mathrm{x}-5)+15 .. Solve f(x)=15\mathrm{f}(\mathrm{x})=15 .

(Multiple Choice)
4.8/5
(36)

Evaluate the given function. Round to the nearest thousandth. - f(x)=ex+2,f(1)f(x)=e^{x+2}, f(-1)

(Multiple Choice)
4.9/5
(33)

Determine the equation of the vertical asymptote for the graph of this function, and state the domain and range of this function. - f(x)=log(x+4)4f(x)=\log (x+4)-4

(Multiple Choice)
4.9/5
(27)

Rewrite in terms of two or more logarithms using the quotient and product rules for logarithms. Assume all variables represent positive real numbers. - logw(7x4)\log _{\mathrm{w}}\left(\frac{7 \mathrm{x}}{4}\right)

(Multiple Choice)
4.8/5
(37)

Rew rite as a single logarithm. A ssume all variables represent positive real numbers. - logbx82logbx\log _{b} x^{8}-2 \log _{b} \sqrt{x}

(Multiple Choice)
4.8/5
(29)

Solve the problem. -Find (f+g)(4)(f+g)(4) when f(x)=x+7f(x)=x+7 and g(x)=x+1g(x)=x+1 .

(Multiple Choice)
4.8/5
(35)

Determine whether the functions f(x)f(x) and g(x)g(x) are inverse functions. - f(x)=x+9,g(x)=x9f(x)=-x+9, g(x)=x-9

(True/False)
4.8/5
(32)

Solve the equation. - logx+log(x+1)=log2\log x+\log (x+1)=\log 2

(Multiple Choice)
4.8/5
(35)

Graph f(x). State the domain, range, and horizontal asymptote of the function - f(x)=2xf(x)=2^{x}  Graph f(x). State the domain, range, and horizontal asymptote of the function - f(x)=2^{x}

(Multiple Choice)
4.9/5
(33)

The decay of 200mg200 \mathrm{mg} of an isotope is given by A(t)=200e0.012t\mathrm{A}(\mathrm{t})=200 \mathrm{e}^{-0.012 \mathrm{t}} , where tt is time in years since the initial amount of 200mg200 \mathrm{mg} was present. Find the amount left (to the nearest mg\mathrm{mg} ) after 71 years.

(Multiple Choice)
4.9/5
(34)

Rewrite in logarithmic form - 42=1164^{-2}=\frac{1}{16}

(Multiple Choice)
4.9/5
(25)
Showing 381 - 400 of 404
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)