Exam 9: Logarithmic and Exponential Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Graph f(x). State the domain, range, and horizontal asymptote of the function - f(x)=4x4f(x)=4^{x}-4  Graph f(x). State the domain, range, and horizontal asymptote of the function - f(x)=4^{x}-4

(Multiple Choice)
4.8/5
(34)

For the given function g(x)g(x) , find a function f(x)f(x) such that (fg)(x)=x(f \circ g)(x)=x . - g(x)=x+5g(x)=x+5

(Multiple Choice)
4.8/5
(24)

Rewrite in exponential form. - log3(9x4)=1\log _{3}(9 x-4)=1

(Multiple Choice)
4.8/5
(36)

Determine whether the graph is the graph of a function. -Determine whether the graph is the graph of a function. -

(True/False)
4.9/5
(42)

Determine whether the functions f(x)f(x) and g(x)g(x) are inverse functions. - f(x)=x+3,g(x)=x3f(x)=x+3, g(x)=x-3

(True/False)
4.8/5
(25)

For the given function g(x)g(x) , find a function f(x)f(x) such that (fg)(x)=x(f \circ g)(x)=x . - g(x)=4x+7g(x)=4 x+7

(Multiple Choice)
4.8/5
(30)

Rewrite as a single logarithm using the product rule for logarithms. A ssume all variables represent positive real numbers. - log7x+log7y\log _{7} \mathrm{x}+\log _{7} \mathrm{y}

(Multiple Choice)
5.0/5
(37)

Solve the equation. - log7(6x1)+log7x=1\log _{7}(6 x-1)+\log _{7} \mathrm{x}=1

(Multiple Choice)
4.9/5
(26)

A fixed point of a function f(x)f(x) is a value for which f(x)=xf(x)=x . For the given function, find: a) Fixed point of f(x)f(x) b) (f f)(x)\circ f)(\mathbf{x}) c) Fixed point of (f f)(x)\circ\mathbf{f})(\mathbf{x}) - f(x)=12x+6f(x)=-\frac{1}{2} x+6

(Multiple Choice)
4.9/5
(42)

Graph. State the domain, range, and vertical asymptote of the function - f(x)=ln(x+3) f(x)=\ln (x+3)  Graph. State the domain, range, and vertical asymptote of the function -  f(x)=\ln (x+3)

(Multiple Choice)
4.8/5
(31)

Expand. A ssume that all variables represent positive real numbers. - log7(12rs)\log _{7}\left(\frac{12 \sqrt{\mathrm{r}}}{\mathrm{s}}\right)

(Multiple Choice)
4.7/5
(28)

The number of reports of a certain virus has increased exponentially since 1960. The number of cases can be approximated using the function r(t)=207e0.006tr(t)=207 \mathrm{e}^{0.006 t} , where tt is the number of years since 1960. Estimate the number of cases in the year 2000.

(Multiple Choice)
4.9/5
(38)

Solve. - 4x=1644^{x}=\frac{1}{64}

(Multiple Choice)
4.8/5
(36)

For the given exponential function, find a) the average rate of change for the interval [3,5][3,5] and b) the interval [3.5,4.5][3.5,4.5] , as well as c) the rate of change at x=4x=4 . Round all calculations to the nearest hundredth. - f(x)=ex35\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}-3}-5

(Multiple Choice)
4.9/5
(29)

For the given function f(x)f(x) , find f1(x)f^{-1}(x) . State the domain of f1(x)f^{-1}(x) . - f(x)=4x+5f(x)=\sqrt{4 x+5}

(Multiple Choice)
4.8/5
(36)

Evaluate. Round to the nearest thousandth, if necessary. - log285\log 285

(Multiple Choice)
4.9/5
(38)

Evaluate using the change-of-base formula. Round to four decimal places. - log8.5137\log _{8.5} 137

(Multiple Choice)
4.9/5
(45)

Graph f(x). State the domain, range, and horizontal asymptote of the function - f(x)=3x+3f(x)=3^{x+3}  Graph f(x). State the domain, range, and horizontal asymptote of the function - f(x)=3^{x+3}

(Multiple Choice)
4.8/5
(30)

Find the specified domain -For g(x)=x+3g(x)=\sqrt{x+3} and h(x)=1x4h(x)=\frac{1}{x-4} , what is the domain of hgh \circ g ?

(Multiple Choice)
4.8/5
(27)

Solve. - 31+2x=2433^{1+2 \mathrm{x}}=243

(Multiple Choice)
4.8/5
(32)
Showing 301 - 320 of 404
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)