Exam 10: Compositions, Inverses, and Combinations of Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Let m(x)=exm(x)=e^{x} and n(x)=x4x+5n(x)=\frac{x^{4}}{x+5} . Does m(n(x))=e4xex+5m(n(x))=\frac{e^{4 x}}{e^{x}+5} ?

(True/False)
4.9/5
(41)

Let g(x)=6x+6g(x)=\frac{6}{x}+6 . Does g1(x)=6x6g^{-1}(x)=\frac{6}{x-6} ?

(True/False)
4.8/5
(34)

The function h(x)h(x) is shown in the first figure.  The function  h(x)  is shown in the first figure.   Which transformation of  h(x)  is shown in the second figure? Which transformation of h(x)h(x) is shown in the second figure?

(Multiple Choice)
4.8/5
(38)

Given the graph of gg below, which of the following is a solution to the equation g(x)=1g(x)=1 ?  Given the graph of  g  below, which of the following is a solution to the equation  g(x)=1  ?

(Multiple Choice)
4.9/5
(35)

Let m(x)=f(g(x))m(x)=f(g(x)) and n(x)=g(f(x))n(x)=g(f(x)) . Using the table below gives m(7)=m(7)= -----------and n(7)=n(7)= -----------------  Let  m(x)=f(g(x))  and  n(x)=g(f(x)) . Using the table below gives  m(7)=  -----------and  n(7)= -----------------

(Short Answer)
4.9/5
(34)

Find the function p(x)=f(x)g(x)p(x)=f(x)-g(x) when f(x)=4x3+7f(x)=4 x^{3}+7 and g(x)=2x+9g(x)=2 x+9 .

(Short Answer)
4.9/5
(25)

Let v(x)=4ex+3xv(x)=4 e^{x}+3 x and u(x)=2xu(x)=-2 x . Find a simplified formula for the function w(x)=(u(v(x)))2w(x)=(u(v(x)))^{2} .

(Short Answer)
4.8/5
(36)

Let f(x)=x2+1f(x)=x^{2}+1 and h(x)=x3h(x)=\sqrt{x-3} . Does h(f(x))=x23h(f(x))=\sqrt{x^{2}-3} ?

(True/False)
4.7/5
(35)

Let f(x)=x+3f(x)=x+3 and g(x)=x2g(x)=x^{2} . What is 4f(x)g(x)4 f(x)-g(x) ?

(Multiple Choice)
5.0/5
(37)
Showing 61 - 69 of 69
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)