Exam 13: Introduction to Multiple Regression

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Instruction 13.22 The education department's regional executive officer wanted to predict the percentage of students passing a Grade 6 proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries) and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending: Instruction 13.22 The education department's regional executive officer wanted to predict the percentage of students passing a Grade 6 proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries) and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y = % Passing as the dependent variable, X<sub>1</sub> = % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending:    -Referring to Instruction 13.22,the null hypothesis H<sub>0</sub>: β<sub>1</sub> = β<sub>2</sub> = β<sub>3</sub>= 0 implies that percentage of students passing the proficiency test is not affected by any of the explanatory variables. -Referring to Instruction 13.22,the null hypothesis H0: β1 = β2 = β3= 0 implies that percentage of students passing the proficiency test is not affected by any of the explanatory variables.

(True/False)
4.8/5
(26)

Instruction 13.16 A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size) and education of the head of household (School). House size is measured in hundreds of square metres, income is measured in thousands of dollars and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: OUTPUT SUMMARY Regression Statistics Multiple R 0.865 R Square 0.748 Adj. R Square 0.726 Std. Error 5.195 Observations 50 ANOVA df SS MS F Signiff Regression 3605.7736 901.4434 0.0001 Residual 1214.2264 26.9828 Total 49 4820.0000 Coeff StdError t Stat p value Intercept -1.6335 5.8078 -0.281 0.7798 Income 0.4485 0.1137 3.9545 0.0003 Size 4.2615 0.8062 5.286 0.0001 School -0.6517 0.4319 -1.509 0.1383 Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error -Referring to Instruction 13.16,which of the following values for the level of significance is the smallest for which the regression model as a whole is significant?

(Multiple Choice)
4.7/5
(32)

Instruction 13.13 A financial analyst wanted to examine the relationship between salary (in $1,000) and four variables: age (X1 = Age), experience in the field (X2 = Exper), number of degrees (X3 = Degrees) and number of previous jobs in the field (X4 = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output:  OUTPUT \text { OUTPUT } SUMMARY Regression Statistics Multiple R 0.992 R Square 0.984 Adj. R Square 0.979 Std. Error 2.26743 Observations 20 ANOVA df SS MS F Signif F Regression 4 4609.83164 1152.45791 224.160 0.0001 Residual 15 77.11836 5.14122 Total 19 4686.95000 Coeff Std Error t Stat p value Intercept -9.611198 2.77988638 -3.457 0.0035 Age 1.327695 0.11491930 11.553 0.0001 Exper -0.106705 0.14265559 -0.748 0.4660 Degrees 7.311332 0.80324187 9.102 0.0001 Prevjobs -0.504168 0.44771573 -1.126 0.2778 Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error -Referring to Instruction 13.13,the value of the coefficient of multiple determination,r2Y.1234,is ___________.

(Short Answer)
4.8/5
(26)

AU: Question 37 is the same as Question 36. Please check. Instruction 13.12 AU: Please advise if Instruction 13.12 can be renumbered to Instruction 13.11 and further questions renumbered. Or advise whether there shall be new Instruction 13.11 included. The Head of the Accounting Department wanted to see if she could predict the average grade of students using the number of course units (credits) and total university entrance exam scores of each. She takes a sample of students and generates the following Microsoft Excel output: OUTPUT SUMMARY Regression Statistics MultipleR 0.916 R Square 0.839 Adj. R Square 0.732 Std. Error 0.24685 Observations 6 ANOVA df SS MS F Signiff Regression 2 0.95219 0.47610 7.813 0.0646 Residual 3 0.18281 0.06094 Total 5 1.13500 Coeff StdError t Stat p value Intercept 4.593897 1.13374542 4.052 0.0271 GDP -0.247270 0.06268485 -3.945 0.0290 Price 0.001443 0.00101241 1.425 0.2494 Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error -Referring to Instruction 13.12,the net regression coefficient of X2 is___________.

(Short Answer)
4.8/5
(40)

Instruction 13.4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size) and education of the head of household (School). House size is measured in hundreds of square metres, income is measured in thousands of dollars and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: OUTPUT SUMMARY Regression Statistics Multiple R 0.865 R Square 0.748 Adj. R Square 0.726 Std. Error 5.195 Observations 50 ANOVA df SS MS F Signif F Regression 3605.7736 901.4434 0.0001 Residual 1214.2264 26.9828 Total 49 4820.0000 Coeff StdError t Stat p value Intercept -1.6335 5.8078 -0.281 0.7798 Income 0.4485 0.1137 3.9545 0.0003 Size 4.2615 0.8062 5.286 0.0001 School -0.6517 0.4319 -1.509 0.1383 Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error -Referring to Instruction 13.4,what minimum annual income would an individual with a family size of 9 and 10 years of education need to attain a predicted 5,000 square metre home (House = 50)?

(Multiple Choice)
4.8/5
(39)

Instruction 13.30 A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size) and education of the head of household (School). House size is measured in hundreds of square metres, income is measured in thousands of dollars and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: OUTPUT SUMMARY Regression Statistics Multiple R 0.865 R Square 0.748 Adj. R Square 0.726 Std. Error 5.195 Observations 50 ANOVA df SS MS F Signiff Regression 3605.7736 901.4434 0.0001 Residual 1214.2264 26.9828 Total 49 4820.0000 Coeff StdError t Stat p value Intercept -1.6335 5.8078 -0.281 0.7798 Income 0.4485 0.1137 3.9545 0.0003 Size 4.2615 0.8062 5.286 0.0001 School -0.6517 0.4319 -1.509 0.1383 Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error -Referring to Instruction 13.30,suppose the builder wants to test whether the coefficient on Income is significantly different from 0.What is the value of the relevant t-statistic?

(Multiple Choice)
5.0/5
(44)

In a particular model,the sum of the squared residuals was 847.If the model had 5 independent variables,and the data set contained 40 points,the value of the standard error of the estimate is 24.911.

(True/False)
4.8/5
(33)

Instruction 13.1 A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X1) and how he/she scored on a business aptitude test (X2). A random sample of 8 employees provides the following: Employee Y X1 X2 1 100 10 7 2 90 3 10 3 80 8 9 4 70 5 4 5 60 5 8 6 50 7 5 7 40 1 4 8 30 1 1 -Referring to Instruction 13.1,for these data,what is the value for the regression constant,b0?

(Multiple Choice)
4.9/5
(39)

AU: Question 37 is the same as Question 36. Please check. Instruction 13.12 AU: Please advise if Instruction 13.12 can be renumbered to Instruction 13.11 and further questions renumbered. Or advise whether there shall be new Instruction 13.11 included. The Head of the Accounting Department wanted to see if she could predict the average grade of students using the number of course units (credits) and total university entrance exam scores of each. She takes a sample of students and generates the following Microsoft Excel output: OUTPUT SUMMARY Regression Statistics MultipleR 0.916 R Square 0.839 Adj. R Square 0.732 Std. Error 0.24685 Observations 6 ANOVA df SS MS F Signiff Regression 2 0.95219 0.47610 7.813 0.0646 Residual 3 0.18281 0.06094 Total 5 1.13500 Coeff StdError t Stat p value Intercept 4.593897 1.13374542 4.052 0.0271 GDP -0.247270 0.06268485 -3.945 0.0290 Price 0.001443 0.00101241 1.425 0.2494 Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error -Referring to Instruction 13.12,the Head of Department wants to test H0: β\beta 1 = β\beta 2 = 0.The value of the F test statistic is ___________.

(Short Answer)
4.8/5
(32)

A regression had the following results: SST = 82.55,SSE = 29.85.It can be said that 73.4% of the variation in the dependent variable is explained by the independent variables in the regression.

(True/False)
4.7/5
(38)

Multiple regression is the process of using several independent variables to predict a number of dependent variables.

(True/False)
4.9/5
(41)

Instruction 13.29 An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below. OUTPUT SUMMARY Regression Statistics MultipleR 0.991 R Square 0.982 Adj. R Square 0.976 Std. Error 0.299 Observations 10 ANOVA df SS MS F Signiff Regression 2 33.4163 16.7082 186.325 0.0001 Residual 7 0.6277 0.0897 Total 9 34.0440 Coeff StdError t Stat p value Intercept -1.6335 0.5674 -0.152 0.8837 GDP 0.7654 0.0574 13.340 0.0001 Price -0.0006 0.0028 -0.219 0.8330 Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error -Referring to Instruction 13.29,to test whether aggregate price index has a positive impact on consumption,the p-value is

(Multiple Choice)
4.8/5
(38)

Instruction 13.5 A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. OUTPUT SUMMARY Regression Statistics Multiple R 0.830 R Square 0.689 Adj. R Square 0.662 Std. Error 17501.643 Observations 26 ANOVA df SS MS F Signif F Regression 2 15579777040 7789888520 25.432 0.0001 Residual 23 7045072780 306307512 Total 25 22624849820 Coeff StdError t Stat p -value Intercept 15800.0000 6038.2999 2.617 0.0154 Capital 0.1245 0.2045 0.609 0.5485 Wages 7.0762 1.4729 4.804 0.0001 Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error -Referring to Instruction 13.5,what are the predicted sales (in millions of dollars)for a company spending $500 million on capital and $200 million on wages?

(Multiple Choice)
4.9/5
(36)

Instruction 13.15 An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below. OUTPUT SUMMARY Regression Statistics MultipleR 0.991 R Square 0.982 Adj. R Square 0.976 Std. Error 0.299 Observations 10 ANOVA df SS MS F Signiff Regression 2 33.4163 16.7082 186.325 0.0001 Residual 7 0.6277 0.0897 Total 9 34.0440 Coeff StdError t Stat p value Intercept -1.6335 0.5674 -0.152 0.8837 GDP 0.7654 0.0574 13.340 0.0001 Price -0.0006 0.0028 -0.219 0.8330 Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error -Referring to Instruction 13.15,the p-value for the aggregated price index is

(Multiple Choice)
4.8/5
(39)

A regression had the following results: SST = 82.55,SSE = 29.85.It can be said that 63.84% of the variation in the dependent variable is explained by the independent variables in the regression.

(True/False)
4.8/5
(36)

The purpose of the partial F test in multiple regression is to determine the predictive power of a model including all the X variables.

(True/False)
4.8/5
(36)

Instruction 13.31 A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. Instruction 13.31 A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression.    Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error -Referring to Instruction 13.31,which of the independent variables in the model are significant at the 5% level? Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error -Referring to Instruction 13.31,which of the independent variables in the model are significant at the 5% level?

(Multiple Choice)
4.8/5
(35)

The coefficient of multiple determination is calculated by taking the ratio of the regression sum of squares over the total sum of squares (SSR/SST)and subtracting that value from 1.

(True/False)
4.9/5
(38)

Instruction 13.24 A financial analyst wanted to examine the relationship between salary (in $1,000) and four variables: age (X1 = Age), experience in the field (X2 = Exper), number of degrees (X3 = Degrees) and number of previous jobs in the field (X4 = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output: Instruction 13.24 A financial analyst wanted to examine the relationship between salary (in $1,000) and four variables: age (X<sub>1</sub> = Age), experience in the field (X<sub>2</sub> = Exper), number of degrees (X<sub>3</sub> = Degrees) and number of previous jobs in the field (X<sub>4</sub> = Prevjobs). He took a sample of 20 employees and obtained the following Microsoft Excel output:    Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error -Referring to Instruction 13.24,the analyst wants to use a t test to test for the significance of the coefficient of X<sub>3</sub>.The value of the test statistic is _____. Note: Adj. R Square = Adjusted R Square; Std. Error = Standard Error -Referring to Instruction 13.24,the analyst wants to use a t test to test for the significance of the coefficient of X3.The value of the test statistic is _____.

(Short Answer)
4.8/5
(29)

Instruction 13.37 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married: 1 = married, 0 = otherwise), a dummy variable for head of household (Head: 1 = yes, 0 = no) and a dummy variable for management position (Manager: 1 = yes, 0 = no). We shall call this Model 1. Model 1 Regression Statistics Multiple R 0.7035 R Square 0.4949 Adj. R Square 0.4030 Std. Error 18.4861 Observations 40 ANOVA df SS MS F Signif F Regression 6 11048.6415 1841.4402 5.3885 0.00057 Residual 33 11277.2586 341.7351 Total 39 223325.9 Coeff StdError tStat p value Lower 95\% Upper95\% Intercept 32.6595 23.18302 1.4088 0.1683 -14.5067 79.8257 Age 1.2915 0.3599 3.5883 0.0011 0.5592 2.0238 Edu -1.3537 1.1766 -1.1504 0.2582 -3.7476 1.0402 Job Yr 0.6171 0.5940 1.0389 0.3064 -0.5914 1.8257 Married -5.2189 7.6068 -0.6861 0.4974 -20.6950 10.2571 Head -14.2978 7.6479 -1.8695 0.0704 -29.8575 1.2618 Manager -24.8203 11.6932 -2.1226 0.0414 -48.6102 -1.0303 Model 2 is the regression analysis where the dependent variable is Unemploy and the independent variables are Age and Manager. The results of the regression analysis are given below: Mode 2 Regression Statistics Multiple R 0.6391 R Square 0.4085 Adj. R Square 0.3765 Std. Error 18.8929 Observations 40 ANOVA df SS MS F Signif F Regression 2 9119.0897 4559.5448 12.7740 0.0000 Residual 37 13206.8103 356.9408 Total 39 22325.9 Coeff StdError t Stat p value Intercept -0.2143 11.5796 -0.0185 0.9853 Age 1.4448 0.3160 4.5717 0.0000 Manager -22.5761 11.3488 -1.9893 0.0541 -Referring to Instruction 13.37 Model 1,which of the six independent variables (Age,Edu,Job Yr,Married,Head and Manager)is (are)insignificant in affecting the dependent variable using a 5% level of significance after taking into account the effect of the remaining independent variables?

(Short Answer)
4.8/5
(39)
Showing 141 - 160 of 269
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)