Exam 9: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

5xsinx2dx\int 5 x \sin x ^ { 2 } d x Enter your answer with any coefficients in front as integers or reduced fractions of form ab\frac { a } { b } .

(Short Answer)
4.8/5
(34)

\int 1xlnxln(lnx)\frac { 1 } { x \ln x \ln ( \ln x ) } dx   [Hint: Let u = ln(ln x).] Enter your answer with any coefficients in front as integers or reduced fractions of form ab\frac { a } { b } .

(Short Answer)
4.8/5
(46)

Evaluate the integral using integration by parts. - sec4xdx\int \sec ^ { 4 } x d x

(Multiple Choice)
4.9/5
(40)

Determine the integral by making an appropriate substitution. - tan2xsec2xdx\int \tan ^ { 2 } x \sec ^ { 2 } x d x   Use the substitution u = tan x.

(Multiple Choice)
4.7/5
(38)

Does this integral excosxdx\int e ^ { x } \cos x d x = exsinx+excosx2\frac { \mathrm { e } ^ { x } \sin x + \mathrm { e } ^ { x } \cos x } { 2 } + C?

(True/False)
4.8/5
(34)

2x(x2+1)3dx\int 2 x \left( x ^ { 2 } + 1 \right) ^ { 3 } d x Enter your answer with any coefficients in front as integers or reduced fractions of form a/b.

(Short Answer)
4.8/5
(33)

Determine the integral by making an appropriate substitution. - x+32x2+3x\int \frac { x + \frac { 3 } { 2 } } { x ^ { 2 } + 3 x } dx

(Multiple Choice)
4.8/5
(40)

Evaluate the integral. - 0π/2xcosxdx\int _ { 0 } ^ { \pi / 2 } x \cos x d x

(Multiple Choice)
4.8/5
(30)

Calculate (a) the trapezoidal approximation and (b) Simpson's approximation to abf(x)dx\int _ { a } ^ { b } f ( x ) d x where f is the tabulated function. xa=0 f(x)1 1 2 3 4 5 6 7 8 9 10=b 2 3 4 5 6 7 8 9 10 11 Enter your answers in that order as just unlabeled integers separated by a comma.

(Short Answer)
4.9/5
(44)

Evaluate the integral. - 13\int _ { 1 } ^ { 3 } 1x\frac { 1 } { x } dx Enter just a real number (no approximations and no parentheses around the argument).

(Short Answer)
4.9/5
(36)

In 1940, the population density of Philadelphia was given by 60 e0.4e ^ { - 0.4 } thousand people per square mile at a distance t miles from City Hall. How many people lived between 1 and 3 miles from City Hall? Enter just an integer (no words) representing the number to the nearest thousand.

(Short Answer)
4.9/5
(33)

Evaluate the integral. - 12e1/xx2dx\int _ { 1 } ^ { 2 } - \frac { e ^ { 1 / x } } { x ^ { 2 } } d x

(Multiple Choice)
5.0/5
(50)

Evaluate the improper integral whenever it is convergent. If it is divergent, state this. - 2dxxlnx\int _ { 2 } ^ { \infty } \frac { d x } { x \ln x }

(Multiple Choice)
4.8/5
(31)

Evaluate the integral. - 21xx+3\int _ { - 2 } ^ { 1 } \frac { x } { \sqrt { x + 3 } } dx

(Multiple Choice)
4.8/5
(35)

Does this integral x3lnxdx\int x ^ { 3 } \ln x d x = 14\frac { 1 } { 4 } x4x ^ { 4 } ln x + 116\frac { 1 } { 16 } x4x ^ { 4 } + C?

(True/False)
4.9/5
(35)

Does this integral 01\int _ { 0 } ^ { 1 } 2x+1ex\frac { 2 x + 1 } { e ^ { x } } dx = 3e5e\frac { 3 e - 5 } { e } ?

(True/False)
4.8/5
(44)

Does this integral xexsinxdx\int x e ^ { x } \sin x d x = ex((x1)cosx+xsinx)2\frac { - e ^ { x } ( ( x - 1 ) \cos x + x \sin x ) } { 2 } + C?

(True/False)
4.7/5
(35)

\int exexex+ex\frac { e ^ { x } - e ^ { - x } } { e ^ { x } + e ^ { - x } } dx Enter your answer with any coefficients in front as integers or reduced fractions of form a/b.

(Short Answer)
4.9/5
(35)

Which of the following is a correct substitution for the integral 1ecos(lnx)xdx\int _ { 1 } ^ { e } \frac { \cos ( \ln x ) } { x } d x ?

(Multiple Choice)
4.8/5
(33)

Determine the integral by making an appropriate substitution. - ex1+2exdx\int \frac { \mathrm { e } ^ { \mathrm { x } } } { 1 + 2 \mathrm { e } ^ { \mathrm { x } } } \mathrm { dx }

(Multiple Choice)
4.9/5
(28)
Showing 141 - 160 of 178
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)