Exam 9: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Determine the integral by making an appropriate substitution. - x2sin(7x36)dx\int x ^ { 2 } \sin \left( 7 x ^ { 3 } - 6 \right) d x

(Multiple Choice)
4.8/5
(35)

The shaded area in the diagram represents an estimation abf(x)\int _ { a } ^ { b } f ( x ) dx using:  The shaded area in the diagram represents an estimation  \int _ { a } ^ { b } f ( x )  dx using:

(Multiple Choice)
4.8/5
(39)

Does this integral xcos5xdx\int x \cos 5 x d x = 15\frac { 1 } { 5 } x sin 5x - 125\frac { 1 } { 25 } cos 5x + C?

(True/False)
4.9/5
(23)

Approximate 0111+x2\int _ { 0 } ^ { 1 } \frac { 1 } { 1 + x ^ { 2 } } dx; n = 4, by (a) Simpson's rule and (b) the trapezoidal rule. Enter your answers in that order as just unlabeled real numbers rounded to two decimal places, separated by a comma.

(Short Answer)
4.9/5
(36)

Does this integral \int ln(lnx)x\frac { \ln ( \ln x ) } { x } dx = ln x(ln(ln x) -1) + C?

(True/False)
4.9/5
(39)

Determine the integral by making an appropriate substitution. - sinθcos2θ1+cos3θ\int \frac { \sin \theta \cos ^ { 2 } \theta } { 1 + \cos ^ { 3 } \theta }

(Multiple Choice)
4.9/5
(28)

Determine the integral by making an appropriate substitution. - sinx1cosxdx\int \frac { \sin x } { 1 - \cos x } d x

(Multiple Choice)
4.7/5
(40)

(x1)e(3x26x)dx\int ( x - 1 ) e ^ { \left( 3 x ^ { 2 } - 6 x \right) } d x Enter your answer with any coefficients in front as integers or reduced fractions of form a/b.

(Short Answer)
4.8/5
(37)

Does this integral \int cosx(3sinx+1)2\frac { \cos x } { ( 3 \sin x + 1 ) ^ { 2 } } dx = 13(3sinx+1)\frac { 1 } { 3 ( 3 \sin x + 1 ) } + C?

(True/False)
4.9/5
(47)

Evaluate the integral using integration by parts. - eaxsinbxdx\int e ^ { a x } \sin b x d x

(Multiple Choice)
4.9/5
(41)

Evaluate the integral using integration by parts. - xe3xdx\int x e ^ { 3 x } d x

(Multiple Choice)
4.8/5
(33)

A company estimates that the rate of revenue produced by an investment will be K(t) thousand dollars per year at time t, where K(t)=9te0.2t\mathrm { K } ( \mathrm { t } ) = 9 \mathrm { t } \mathrm { e } ^ { - 0.2 \mathrm { t } } Find the present value of this stream of income over the next four years using 10% interest rate. Enter just an integer (no units) representing the amount to the nearest dollar.

(Short Answer)
4.9/5
(36)

Evaluate the improper integral whenever it is convergent. If it is divergent, state this. - 1dxx2\int _ { 1 } ^ { \infty } \frac { d x } { x ^ { 2 } }

(Multiple Choice)
4.9/5
(40)

Approximate the integral by the trapezoidal rule. - 01x3ex\int _ { 0 } ^ { 1 } x ^ { 3 } e ^ { x } dx; n = 4 Express your answer to four decimal places.

(Multiple Choice)
4.9/5
(43)

Evaluate the integral using integration by parts. - x2\int x ^ { 2 } e2x\mathrm { e } ^ { 2 x } dx

(Multiple Choice)
4.8/5
(40)

Approximate 121x2\int _ { 1 } ^ { 2 } \frac { 1 } { x ^ { 2 } } dx; n = 6, by (a) Simpson's rule and (b) the trapezoidal rule. Enter your answers in that order as just unlabeled real numbers rounded to two decimal places, separated by a comma.

(Short Answer)
4.9/5
(47)

Evaluate the integral using integration by parts. - x4lnxdx\int x ^ { 4 } \ln x d x

(Multiple Choice)
4.9/5
(33)

tan42xsec22xdx\int \tan ^ { 4 } 2 x \sec ^ { 2 } 2 x d x Enter your answer with any coefficients in front as integers or reduced fractions of form ab\frac { a } { b } . No parentheses around arguments of functions.

(Short Answer)
4.9/5
(51)

Does this integral 3xcosxdx\int 3 x \cos x d x = 3x sin x + 3 cos x + C?

(True/False)
4.7/5
(32)

Does this integral 3x4x+3dx\int 3 x \sqrt { 4 x + 3 } d x = 3(2x1)(4x+3)3/220\frac { 3 ( 2 x - 1 ) ( 4 x + 3 ) ^ { 3 / 2 } } { 20 } + C?

(True/False)
4.8/5
(40)
Showing 81 - 100 of 178
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)