Exam 9: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

4x5(x6+100)5dx\int 4 x ^ { 5 } \left( x ^ { 6 } + 100 \right) ^ { 5 } d x Enter your answer with any coefficients in front as integers or reduced fractions of form a/b.

(Short Answer)
4.7/5
(40)

Evaluate the integral. - 0πsinxcosxdx\int _ { 0 } ^ { \pi } \sin x \cos x d x

(Multiple Choice)
4.9/5
(40)

Approximate 1512x2dx\int _ { 1 } ^ { 5 } \frac { 1 } { 2 x ^ { 2 } } d x ; n = 8, by (a) the trapezoidal rule, (b) the midpoint rule, and (c) then find the exact value of the integral. Enter just a, b, c as real numbers all rounded to two decimal places. Do not label, but answer in the above order using commas to separate.

(Short Answer)
5.0/5
(41)

Approximate 01x4\int _ { 0 } ^ { 1 } x ^ { 4 } dx; n = 4, by (a) Simpson's rule and (b) the trapezoidal rule. Enter your answers in that order as just unlabeled real numbers rounded to two decimal places, separated by a comma.

(Short Answer)
4.8/5
(42)

\int cos2xsin32x\frac { \cos 2 x } { \sin ^ { 3 } 2 x } dx Enter your answer with any coefficients in front as integers or reduced fractions of form ab\frac { a } { b } . No parentheses around arguments of functions.

(Short Answer)
4.7/5
(41)

0e3x+1dx\int _ { - \infty } ^ { 0 } e ^ { 3 x + 1 } d x Enter your answer as a reduced quotient or the word "divergent".

(Short Answer)
4.9/5
(36)

Does this integral 1ecos(lnx2)x\int _ { 1 } ^ { \sqrt { \mathrm { e } } } \frac { \cos \left( \ln x ^ { 2 } \right) } { x } dx = 12\frac { 1 } { 2 } sin(1)?

(True/False)
4.8/5
(40)

(3x2+2)x3+2xdx\int \left( 3 x ^ { 2 } + 2 \right) \sqrt { x ^ { 3 } + 2 x } d x Enter your answer with any coefficients in front as integers or reduced fractions of form a/b.

(Short Answer)
4.9/5
(29)

Does this integral sin(lnx)dx\int \sin ( \ln x ) d x = xsin(lnx)xcos(lnx)2\frac { x \sin ( \ln x ) - x \cos ( \ln x ) } { 2 } ?

(True/False)
4.8/5
(41)

Evaluate the improper integral whenever it is convergent. If it is divergent, state this. - 0e10x\int _ { - \infty } ^ { 0 } e ^ { 10 x } dx

(Multiple Choice)
4.8/5
(20)

Determine the integral by making an appropriate substitution. - 4(2x+5)3dx\int 4 ( 2 x + 5 ) ^ { 3 } d x

(Multiple Choice)
4.7/5
(36)

Find the area of the shaded region. y = 4x(2x2+1)2\frac { 4 x } { \left( 2 x ^ { 2 } + 1 \right) ^ { 2 } }  Find the area of the shaded region. y =  \frac { 4 x } { \left( 2 x ^ { 2 } + 1 \right) ^ { 2 } }

(Multiple Choice)
4.8/5
(36)

Evaluate the integral using integration by parts. - sin1x\int \sin ^ { - 1 } x dx

(Multiple Choice)
4.9/5
(32)

Does this integral \int x+1e2x\frac { x + 1 } { e ^ { 2 x } } dx = e2x4\frac { - \mathrm { e } ^ { 2 \mathrm { x } } } { 4 } (2x + 3) + C?

(True/False)
4.9/5
(30)

If the annual rate of return from an investment is -3000 + 125t, find the present value of the income generated in the third year if the interest rates are 8.5%.

(Multiple Choice)
4.8/5
(44)

Determine the integral by making an appropriate substitution. - cos1/3xsinx\int \cos ^ { 1 / 3 } x \sin x dx

(Multiple Choice)
4.8/5
(30)

Approximate 01x3\int _ { 0 } ^ { 1 } x ^ { 3 } dx; n = 4, by (a) Simpson's rule and (b) the trapezoidal rule. Enter your answers in that order as just unlabeled real numbers rounded to two decimal places, separated by a comma.

(Short Answer)
4.7/5
(46)

Consider limb\lim _ { b \rightarrow \infty } 2b1b\frac { 2 b - 1 } { b } . Which of the following is true?

(Multiple Choice)
4.9/5
(36)

\int sinxx\frac { \sin \sqrt { x } } { \sqrt { x } } dx Enter your answer with any coefficients in front as integers or reduced fractions of form ab\frac { a } { b } .

(Short Answer)
4.9/5
(41)

0x(x+1)3dx\int _ { 0 } ^ { \infty } x ( x + 1 ) ^ { - 3 } d x Enter your answer as a reduced fraction or the word "divergent".

(Short Answer)
5.0/5
(34)
Showing 21 - 40 of 178
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)