Exam 9: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Does this integral xx+3dx\int x \sqrt { x + 3 } d x = 23\frac { 2 } { 3 } x (x+3)3/2( x + 3 ) ^ { 3 / 2 } - 415\frac { 4 } { 15 } (x+3)5/2( x + 3 ) ^ { 5 / 2 } + C?

(True/False)
4.7/5
(34)

cotxcscxecscx\int \cot x \csc x e ^ { \csc x } dx   [Hint: ddx\frac { \mathrm { d } } { \mathrm { dx } } csc x = -cot x csc x] Enter your answer with any coefficients in front as integers or reduced fractions of form ab\frac { a } { b } . No parentheses around arguments of functions.

(Short Answer)
4.8/5
(40)

Evaluate the integral. - 01x2(5+3x3)2\int _ { 0 } ^ { 1 } \frac { x ^ { 2 } } { \left( 5 + 3 x ^ { 3 } \right) ^ { 2 } } dx

(Multiple Choice)
4.9/5
(38)

Evaluate the integral. - 23x(x22)2dx\int _ { 2 } ^ { 3 } \frac { x } { \left( x ^ { 2 } - 2 \right) ^ { 2 } } d x Enter just a reduced fraction of form ab\frac { a } { b } .

(Short Answer)
4.8/5
(31)

\int lnx2x\frac { \ln x ^ { 2 } } { x } dx Enter your answer with any coefficients in front as integers or reduced fractions of form ab\frac { a } { b } .

(Short Answer)
4.7/5
(42)

tanxdx\int \tan x d x Enter your answer with any coefficients in front as integers or reduced fractions of form ab\frac { a } { b } . No parentheses around arguments of functions.

(Short Answer)
4.8/5
(46)

Determine the integral by making an appropriate substitution. - tan9(2x)sec2(2x)\int \tan ^ { 9 } ( 2 x ) \sec ^ { 2 } ( 2 x ) dx

(Multiple Choice)
4.9/5
(34)

Approximate 03x2dx\int _ { 0 } ^ { 3 } x ^ { 2 } d x ; n = 4, by (a) the trapezoidal rule, (b) the midpoint rule, and (c) then find the exact value of the integral. Enter just a, b, c where a and b are real numbers to two decimal places (rounded off), and c is an integer, all separated by commas and answering (a), (b), (c) in order but unlabeled.

(Short Answer)
4.8/5
(36)

0lnx2dx\int _ { 0 } ^ { \infty } \ln x ^ { 2 } d x Enter your answer as just a reduced fraction or the word "divergent".

(Short Answer)
4.7/5
(36)

Approximate 042xdx\int _ { 0 } ^ { 4 } 2 x d x ; n = 4, by (a) the trapezoidal rule, (b) the midpoint rule, and (c) then find the exact value of the integral. Enter just three integers separated by commas answering (a), (b), (c) in that order but unlabeled.

(Short Answer)
4.8/5
(42)

0x\int _ { 0 } ^ { x } 1x+1\frac { 1 } { \sqrt { x + 1 } } dx Enter your answer as a reduced fraction or the word "divergent".

(Short Answer)
4.7/5
(31)

tanxln(cosx)dx\int \tan x \ln ( \cos x ) d x Enter your answer with any coefficients in front as integers or reduced fractions of form ab\frac { a } { b } .

(Short Answer)
4.8/5
(39)

Decide whether integration by parts or substitution should be used to compute the indefinite integral \int cos(lnx)x\frac { \cos ( \ln x ) } { x } dx If substitution, indicate the value of u; if by parts, indicate f(x) and g(x).

(Multiple Choice)
4.9/5
(36)

Evaluate the integral using integration by parts. - x\int x x+1\sqrt { x + 1 } dx

(Multiple Choice)
4.7/5
(41)

Evaluate the integral using integration by parts. - (x+1)exdx\int ( x + 1 ) e ^ { x } d x

(Multiple Choice)
4.8/5
(30)

Does this integral xlnxdx\int x \ln x d x = x22\frac { x ^ { 2 } } { 2 } ln x - x24\frac { x ^ { 2 } } { 4 } + C?

(True/False)
4.7/5
(43)

Evaluate the integral using integration by parts. - xexdx\int x \mathrm { e } ^ { - x } \mathrm { dx }

(Multiple Choice)
4.9/5
(45)

xex2\int x e ^ { x ^ { 2 } } dx Enter your answer with any coefficients in front as integers or reduced fractions of form a/b.

(Short Answer)
4.9/5
(38)

xx24dx\int x \sqrt { x ^ { 2 } - 4 } d x Enter your answer with any coefficients in front as integers or reduced fractions of form ab\frac { a } { b } .

(Short Answer)
4.7/5
(38)

Determine the integral by making an appropriate substitution. - x(7x2+3)5\int \frac { x } { \left( 7 x ^ { 2 } + 3 \right) ^ { 5 } } dx

(Multiple Choice)
4.8/5
(38)
Showing 41 - 60 of 178
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)