Exam 9: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

e2xcos(e2x)\int \mathrm { e } ^ { 2 x } \cos \left( \mathrm { e } ^ { 2 \mathrm { x } } \right) dx Enter your answer with any coefficients in front as integers or reduced fractions of form ab\frac { a } { b } .

(Short Answer)
4.8/5
(36)

Approximate 04\int _ { 0 } ^ { 4 } 1x2+1\frac { 1 } { x ^ { 2 } + 1 } dx; n = 2, by (a) the midpoint rule, (b) the trapezoidal rule, and (c) Simpson's rule. Enter your answers in that order as just unlabeled real numbers rounded to two decimal places, separated by commas.

(Short Answer)
4.9/5
(32)

Determine the integral by making an appropriate substitution. - (x1)7dx\int ( x - 1 ) ^ { 7 } d x

(Multiple Choice)
4.9/5
(37)

Evaluate the integral using integration by parts. - eaxcosbxdx\int e ^ { a x } \cos b x d x

(Multiple Choice)
4.8/5
(28)

Evaluate the integral using integration by parts. - x2exdx\int x ^ { 2 } e ^ { - x } d x

(Multiple Choice)
4.8/5
(50)

Determine the integral by making an appropriate substitution. - (cosx)8sinxdx\int ( \cos x ) ^ { 8 } \sin x d x

(Multiple Choice)
4.9/5
(41)

0e2xdx\int _ { 0 } ^ { \infty } e ^ { - 2 x } d x Enter your answer as a reduced fraction or the word "divergent".

(Short Answer)
4.8/5
(33)

Determine the integral by making an appropriate substitution. - 3(2x+5)3dx\int 3 ( 2 x + 5 ) ^ { 3 } d x

(Multiple Choice)
4.9/5
(40)

Decide whether integration by parts or substitution should be used to compute the indefinite integral \int e1/xx2\frac { - \mathrm { e } ^ { 1 / \mathrm { x } } } { \mathrm { x } ^ { 2 } } dx If substitution, indicate the value of u; if by parts, indicate f(x) and g(x).

(Multiple Choice)
4.8/5
(36)

Which of the following statements are true?

(Multiple Choice)
4.8/5
(27)

\int sec2(lnx)x\frac { \sec ^ { 2 } ( \ln x ) } { x } dx Enter your answer with any coefficients in front as integers or reduced fractions of form ab\frac { a } { b } .

(Short Answer)
4.7/5
(34)

Approximate 04xdx\int _ { 0 } ^ { 4 } \sqrt { x } d x ; n = 2, by (a) the trapezoidal rule, (b) the midpoint rule, and (c) then find the exact value of the integral. Enter just a, b, c where a, b are real numbers rounded to two decimal places, and c is a reduced fraction of form ab\frac { a } { b } all unlabeled and answering the questions in order, separated by commas.

(Short Answer)
4.8/5
(41)

Evaluate the integral. - 01xex2dx\int _ { 0 } ^ { 1 } x \mathrm { e } ^ { x ^ { 2 } } \mathrm { dx }

(Multiple Choice)
4.9/5
(34)

Does this integral 01xe3x2\int _ { 0 } ^ { 1 } x e ^ { 3 x ^ { 2 } } dx = 16\frac { 1 } { 6 } ( e3\mathrm { e } ^ { 3 } - 1)?

(True/False)
4.8/5
(48)

xe(x22x)e(x22x)dx\int x e ^ { \left( x ^ { 2 } - 2 x \right) } - e ^ { \left( x ^ { 2 } - 2 x \right) } d x Enter your answer with any coefficients in front as integers or reduced fractions of form ab\frac { a } { b } .

(Short Answer)
4.8/5
(43)

Does this integral lnxdx\int \ln x d x = x ln x + x + C?

(True/False)
4.9/5
(33)

\int x2+2x3+6x\frac { x ^ { 2 } + 2 } { \sqrt { x ^ { 3 } + 6 x } } dx Enter your answer with any coefficients in front as integers or reduced fractions of form ab\frac { a } { b } .

(Short Answer)
4.8/5
(36)

\int ^ { * } x(x2+1)2\frac { x } { \left( x ^ { 2 } + 1 \right) ^ { 2 } } dx Enter your answer as a reduced fraction or the word "divergent".

(Short Answer)
4.7/5
(29)

Determine the integral by making an appropriate substitution. - \int lnxx\frac { \ln \sqrt { x } } { x } dx   Use the substitution u =ln x\sqrt { x } .

(Multiple Choice)
4.9/5
(35)

Does this integral xe3xdx\int x e ^ { - 3 x } \mathrm { dx } = - 13\frac { 1 } { 3 } xe3xx e ^ { - 3 x } - 19\frac { 1 } { 9 } e3xe ^ { - 3 x } + C?

(True/False)
4.7/5
(40)
Showing 121 - 140 of 178
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)