Exam 6: Dynamics I: Motion Along a Line
Exam 1: Concepts of Motion52 Questions
Exam 2: Kinematics in One Dimension59 Questions
Exam 3: Vectors and Coordinate Systems33 Questions
Exam 4: Kinematics in Two Dimensions50 Questions
Exam 5: Force and Motion30 Questions
Exam 6: Dynamics I: Motion Along a Line46 Questions
Exam 7: Newtons Third Law43 Questions
Exam 8: Dynamics Ii: Motion in a Plane20 Questions
Exam 9: Work and Kinetic Energy66 Questions
Exam 10: Interactions and Potential Energy55 Questions
Exam 11: Impulse and Momentum43 Questions
Exam 12: Rotation of a Rigid Body116 Questions
Exam 13: Newtons Theory of Gravity50 Questions
Exam 14: Fluids and Elasticity72 Questions
Exam 15: Oscillations49 Questions
Exam 16: Traveling Waves51 Questions
Exam 17: Superposition51 Questions
Exam 18: A Macroscopic Description of Matter46 Questions
Exam 19: Work, Heat, and the First Law of Thermodynamics96 Questions
Exam 20: The Micromacro Connection41 Questions
Exam 21: Heat Engines and Refrigerators44 Questions
Exam 22: Electric Charges and Forces26 Questions
Exam 23: The Electric Field32 Questions
Exam 24: Gausss Law41 Questions
Exam 25: The Electric Potential40 Questions
Exam 26: Potential and Field57 Questions
Exam 27: Current and Resistance32 Questions
Exam 28: Fundamentals of Circuits68 Questions
Exam 29: The Magnetic Field83 Questions
Exam 30: Electromagnetic Induction66 Questions
Exam 31: Electromagnetic Fields and Waves52 Questions
Exam 32: Ac Circuits44 Questions
Exam 33: Wave Optics51 Questions
Exam 34: Ray Optics60 Questions
Exam 35: Optical Instruments52 Questions
Exam 36: Relativity49 Questions
Exam 37: The Foundations of Modern Physics7 Questions
Exam 38: Quantization45 Questions
Exam 39: Wave Functions and Uncertainty18 Questions
Exam 40: One-Dimensional Quantum Mechanics32 Questions
Exam 41: Atomic Physics41 Questions
Exam 42: Nuclear Physics65 Questions
Select questions type
A 1000-kg car is driving toward the north along a straight horizontal road at a speed of 20.0 m/s. The driver applies the brakes and the car comes to a rest uniformly in a distance of 200 m. What are the magnitude and direction of the net force applied to the car to bring it to rest?
Free
(Multiple Choice)
4.8/5
(39)
Correct Answer:
C
A 250-kg crate is on a rough ramp, inclined at 30° above the horizontal. The coefficient of kinetic friction between the crate and ramp is 0.22. A horizontal force of 5000 N is applied to the crate, pushing it up the ramp. What is the acceleration of the crate?
Free
(Multiple Choice)
4.7/5
(46)
Correct Answer:
A
A 50.0-kg box rests on a horizontal surface. The coefficient of static friction between the box and the surface is 0.300 and the coefficient of kinetic friction is 0.200. What is the friction force on the box if
(a) a horizontal 140-N push is applied to it?
(b) a horizontal 175-N push is applied to it?
Free
(Short Answer)
4.9/5
(41)
Correct Answer:
(a) 140 N (b) 98.0 N
A ship is being pulled through a harbor at constant velocity by two tugboats as shown in the figure. The lines attached to the two tugboats have the same tension of 200,000 N. Each line makes an angle of 28.0° with the direction the ship is being towed. What is the magnitude of the drag force due to the water on the ship? 

(Multiple Choice)
4.9/5
(32)
A construction worker pulls a box of tools on a smooth horizontal floor with a force of 100 N in a direction of 37.0° above the horizontal. The mass of the box and the tools is 40.0 kg.
(a) Draw a free-body diagram for the box.
(b) Calculate the acceleration of the box.
(c) How hard does the floor push up on the box?
(Essay)
4.9/5
(32)
Jason takes off from rest across level water on his jet-powered skis. The combined mass of Jason and his skis is 75 kg (the mass of the fuel is negligible). The skis have a thrust of 200 N and a coefficient of kinetic friction on water of 0.10. Unfortunately, the skis run out of fuel after only 48 s. What is Jason's top speed?
(Multiple Choice)
4.8/5
(23)
A packing crate rests on a horizontal surface. It is acted on by three horizontal forces: 600 N to the left, 200 N to the right, and friction. The weight of the crate is 400 N. If the 600-N force is removed, the resultant force acting on the crate is
(Multiple Choice)
4.8/5
(31)
Kieran takes off from rest down a 50 m high, 10° slope on his jet-powered skis. The skis have a thrust of 280 N parallel to the surface of the slope. The combined mass of skis and Kieran is 50 kg (the fuel mass is negligible). Kieran's speed at the bottom is 40 m/s. What is the coefficient of kinetic friction of his skis on snow?
(Multiple Choice)
4.7/5
(37)
An 80.0-kg object is falling and experiences a drag force due to air resistance. The magnitude of this drag force depends on its speed, v, and obeys the equation
What is the terminal speed of this object?

(Multiple Choice)
4.8/5
(32)
The following four forces act on a 4.00 kg object:
1 = 300 N east
2 = 700 N north
3 = 500 N west
4 = 600 N south What is the acceleration of the object?




(Multiple Choice)
4.9/5
(39)
A 60.0-kg person rides in elevator while standing on a scale. The elevator is traveling downward but slowing down at a rate of 2.00 m/s2. The reading on the scale is closest to
(Multiple Choice)
4.7/5
(33)
A 30.0-kg object experiences a drag force due to air resistance with a magnitude proportional to the square of its speed. The object falls with an acceleration of 4.00 m/s2 downward when it is falling downward at 70.0 m/s. What is its terminal speed?
(Multiple Choice)
5.0/5
(39)
A 200 g hockey puck is launched up a metal ramp that is inclined at a 30° angle. The coefficients of static and kinetic friction between the hockey puck and the metal ramp are μs = 0.40 and μk = 0.30, respectively. The puck's initial speed is 63 m/s. What vertical height does the puck reach above its starting point?
(Multiple Choice)
4.8/5
(34)
A box is sliding down an incline tilted at a 12.0° angle above horizontal. The box is initially sliding down the incline at a speed of 1.50 m/s. The coefficient of kinetic friction between the box and the incline is 0.340. How far does the box slide down the incline before coming to rest?
(Multiple Choice)
4.9/5
(41)
A 4.00-kg block rests on a 30.0° incline as shown in the figure. If the coefficient of static friction between the block and the incline is 0.700, what magnitude horizontal force F must act on the block to start it moving up the incline? 

(Multiple Choice)
4.8/5
(35)
A block lies on a horizontal frictionless surface. A horizontal force of 100 N is applied to the block giving rise to an acceleration of 3.0 m/s2.
(a) Determine the mass of the block.
(b) Calculate the distance the block will travel if the force is applied for 10 s.
(c) Calculate the speed of the block after the force has been applied for 10 s.
(Short Answer)
4.8/5
(34)
Two objects have masses m and 5m, respectively. They both are placed side by side on a frictionless inclined plane and allowed to slide down from rest.
(Multiple Choice)
4.8/5
(40)
A 6.0 kg box slides down an inclined plane that makes an angle of 39° with the horizontal. If the coefficient of kinetic friction is 0.19, at what rate does the box accelerate down the slope?
(Multiple Choice)
4.8/5
(31)
Jason takes off from rest across level water on his jet-powered skis. The combined mass of Jason and his skis is 75 kg (the mass of the fuel is negligible). The skis have a thrust of 200 N and a coefficient of kinetic friction on water of 0.10. Unfortunately, the skis run out of fuel after only 67 s. How far has Jason traveled when he finally coasts to a stop?
(Multiple Choice)
4.9/5
(31)
A brick is resting on a rough incline as shown in the figure. The friction force acting on the brick, along the incline, is 

(Multiple Choice)
4.9/5
(26)
Showing 1 - 20 of 46
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)