Exam 26: Potential and Field
Exam 1: Concepts of Motion52 Questions
Exam 2: Kinematics in One Dimension59 Questions
Exam 3: Vectors and Coordinate Systems33 Questions
Exam 4: Kinematics in Two Dimensions50 Questions
Exam 5: Force and Motion30 Questions
Exam 6: Dynamics I: Motion Along a Line46 Questions
Exam 7: Newtons Third Law43 Questions
Exam 8: Dynamics Ii: Motion in a Plane20 Questions
Exam 9: Work and Kinetic Energy66 Questions
Exam 10: Interactions and Potential Energy55 Questions
Exam 11: Impulse and Momentum43 Questions
Exam 12: Rotation of a Rigid Body116 Questions
Exam 13: Newtons Theory of Gravity50 Questions
Exam 14: Fluids and Elasticity72 Questions
Exam 15: Oscillations49 Questions
Exam 16: Traveling Waves51 Questions
Exam 17: Superposition51 Questions
Exam 18: A Macroscopic Description of Matter46 Questions
Exam 19: Work, Heat, and the First Law of Thermodynamics96 Questions
Exam 20: The Micromacro Connection41 Questions
Exam 21: Heat Engines and Refrigerators44 Questions
Exam 22: Electric Charges and Forces26 Questions
Exam 23: The Electric Field32 Questions
Exam 24: Gausss Law41 Questions
Exam 25: The Electric Potential40 Questions
Exam 26: Potential and Field57 Questions
Exam 27: Current and Resistance32 Questions
Exam 28: Fundamentals of Circuits68 Questions
Exam 29: The Magnetic Field83 Questions
Exam 30: Electromagnetic Induction66 Questions
Exam 31: Electromagnetic Fields and Waves52 Questions
Exam 32: Ac Circuits44 Questions
Exam 33: Wave Optics51 Questions
Exam 34: Ray Optics60 Questions
Exam 35: Optical Instruments52 Questions
Exam 36: Relativity49 Questions
Exam 37: The Foundations of Modern Physics7 Questions
Exam 38: Quantization45 Questions
Exam 39: Wave Functions and Uncertainty18 Questions
Exam 40: One-Dimensional Quantum Mechanics32 Questions
Exam 41: Atomic Physics41 Questions
Exam 42: Nuclear Physics65 Questions
Select questions type
Equal but opposite charges Q are placed on the square plates of an air-filled parallel-plate capacitor. The plates are then pulled apart to twice their original separation, which is small compared to the dimensions of the plates. Which of the following statements about this capacitor are true? (There may be more than one correct choice.)
Free
(Multiple Choice)
4.9/5
(39)
Correct Answer:
A, D
Two capacitors, C1 and C2, are connected in series across a source of potential difference. With the potential source still connected, a dielectric is now inserted between the plates of capacitor C1. What happens to the charge on capacitor C2?
Free
(Multiple Choice)
4.7/5
(39)
Correct Answer:
A
The graph in the figure shows the variation of the electric potential V(x) (in arbitrary units) as a function of the position x (also in arbitrary units). Which of the choices below correctly describes the orientation of the x-component of the electric field along the x-axis? 

Free
(Multiple Choice)
4.9/5
(35)
Correct Answer:
B
The capacitive network shown in the figure is assembled with initially uncharged capacitors. A potential difference, Vab = +100V, is applied across the network. The switch S in the network is kept open. Assume that all the capacitances shown are accurate to two significant figures. What is potential difference Vcd across the open switch S? 

(Multiple Choice)
4.9/5
(42)
A conducting sphere contains positive charge distributed uniformly over its surface. Which statements about the potential due to this sphere are true? All potentials are measured relative to infinity. (There may be more than one correct choice.)
(Multiple Choice)
4.9/5
(33)
The capacitive network shown in the figure is assembled with initially uncharged capacitors. A potential difference, Vab = +100V, is applied across the network. The switch S in the network is kept open. Assume that all the capacitances shown are accurate to two significant figures. What is the total energy stored in the seven capacitors? 

(Multiple Choice)
4.8/5
(39)
A parallel-plate capacitor has plates of area 0.40 m2 and plate separation of 0.20 mm. The capacitor is connected across a 9.0-V potential source. (ε0 = 8.85 × 10-12 C2/N ∙ m2)
(a) What is the magnitude of the electric field between the plates?
(b) What is the capacitance of the capacitor?
(c) What is the magnitude of the charge on each plate of the capacitor?
(Essay)
4.8/5
(29)
Three capacitors, with capacitances
= 4.0 μF,
= 3.0 μF, and
= 2.0 μF, are connected to a 12 -V voltage source, as shown in the figure. What is the charge on capacitor
? 





(Multiple Choice)
4.8/5
(37)
A 6.0-μF air-filled capacitor is connected across a 100-V voltage source. After the source fully charges the capacitor, the capacitor is immersed in transformer oil (of dielectric constant 4.5). How much ADDITIONAL charge flows from the voltage source, which remained connected during the process?
(Multiple Choice)
4.8/5
(31)
Three capacitors, of capacitance 5.00 μF, 10.0 μF, and 50.0 μF, are connected in series across a 12.0-V voltage source.
(a) How much charge is stored in the 5.00-μF capacitor?
(b) What is the potential difference across the 10.0-μF capacitor?
(Short Answer)
4.9/5
(38)
The graph in the figure shows the variation of the electric potential V (measured in volts) as a function of the radial direction r (measured in meters). For which range or value of r is the magnitude of the electric field the largest? 

(Multiple Choice)
4.7/5
(38)
A metallic sphere of radius 5 cm is charged such that the potential of its surface is 100 V (relative to infinity). Which of the following plots correctly shows the potential as a function of distance from the center of the sphere?





(Multiple Choice)
4.7/5
(33)
Three capacitors are arranged as shown in the figure. C1 has a capacitance of 5.0 pF, C2 has a capacitance of 10.0 pF, and C3 has a capacitance of 15.0 pF. Find the voltage drop across the entire arrangement if the voltage drop across C2 is 311 V. 

(Multiple Choice)
4.9/5
(28)
A 1.0 μF capacitor has a potential difference of
applied across its plates. If the potential difference across its plates is increased to
how much ADDITIONAL energy does the capacitor store?


(Multiple Choice)
4.8/5
(28)
An ideal air-filled parallel-plate capacitor has round plates and carries a fixed amount of equal but opposite charge on its plates. All the geometric parameters of the capacitor (plate diameter and plate separation) are now DOUBLED. If the original energy density between the plates was u0, what is the new energy density?
(Multiple Choice)
4.9/5
(39)
The potential as a function of position x is shown in the graph in the figure. Which statement about the electric field is true? 

(Multiple Choice)
4.8/5
(33)
An ideal parallel-plate capacitor consists of a set of two parallel plates of area A separated by a very small distance d. When this capacitor is connected to a battery that maintains a constant potential difference between the plates, the energy stored in the capacitor is U0. If the separation between the plates is doubled, how much energy is stored in the capacitor?
(Multiple Choice)
4.7/5
(39)
When two or more capacitors are connected in series across a potential difference,
(Multiple Choice)
4.9/5
(34)
An ideal air-filled parallel-plate capacitor has round plates and carries a fixed amount of equal but opposite charge on its plates. All the geometric parameters of the capacitor (plate diameter and plate separation) are now DOUBLED. If the original capacitance was C0, what is the new capacitance?
(Multiple Choice)
5.0/5
(29)
A parallel-plate capacitor with plate separation of 1.0 cm has square plates, each with an area of 6.0 × 10-2 m2. What is the capacitance of this capacitor if a dielectric material with a dielectric constant of 2.4 is placed between the plates, completely filling them? (ε0 = 8.85 × 10-12 C2/N ∙ m2)
(Multiple Choice)
4.8/5
(26)
Showing 1 - 20 of 57
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)