Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Which of the following is a solution to the given equation? Cscx - 2 = 0

(Multiple Choice)
4.9/5
(44)

Solve the following equation. sinx(5sinx+5)=0\sin x ( 5 \sin x + 5 ) = 0

(Multiple Choice)
4.8/5
(39)

Find the exact value of the given expression using a sum or difference formula. cos13π12\cos \frac { 13 \pi } { 12 }

(Multiple Choice)
4.8/5
(41)

Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) , where C=arctan(a/b)C = \arctan ( a / b ) C=arctan(a/b),a>0C = \arctan ( a / b ) , a > 0 , to rewrite the trigonometric expression in the form asinBθ+bcosBθa \sin B \theta + b \cos B \theta 9 cos(θπ4)\cos \left( \theta - \frac { \pi } { 4 } \right)

(Multiple Choice)
4.8/5
(39)

Which of the following expressions is equivalent to the given expression 2525cosθ1+cosθ\sqrt { \frac { 25 - 25 \cos \theta } { 1 + \cos \theta } } ? ( θ\theta \neq π\pi n, where n is a whole number)

(Multiple Choice)
4.8/5
(32)

Solve the multiple-angle equation. 2sec4x=42 \sec 4 x = 4

(Multiple Choice)
4.8/5
(40)

Use fundamental identities to simplify the expression below and then determine which of the following is not equivalent. cosα(secαcosα)\cos \alpha ( \sec \alpha - \cos \alpha )

(Multiple Choice)
4.8/5
(38)

Use a calculator to demonstrate the identity for the value of θ\theta . sin(θ)=sinθ,θ=258\sin ( - \theta ) = - \sin \theta , \theta = 258 ^ { \circ }

(Multiple Choice)
4.9/5
(36)

Use the fundamental identities to simplify the expression. sinθtanθ\frac { \sin \theta } { \tan \theta }

(Multiple Choice)
4.7/5
(27)

Use the trigonometric substitution u = a sin θ\theta , where - π\pi /2 < θ\theta < π\pi /2 and a > 0 to simplify the expression a2u2\sqrt { a ^ { 2 } - u ^ { 2 } } .

(Multiple Choice)
4.8/5
(30)

Multiply; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent. (tanx+1)2( \tan x + 1 ) ^ { 2 }

(Multiple Choice)
4.7/5
(35)

Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) , where C=arctan(a/b),a=13,b=6,B=3C = \arctan ( a / b ) , a = 13 , b = 6 , B = 3 to rewrite the trigonometric expression in the following form. y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta

(Multiple Choice)
4.8/5
(27)

Convert the expression. 3csc2θ3 \csc 2 \theta

(Multiple Choice)
4.8/5
(35)

Use the cofunction identities to evaluate the expression without using a calculator. ​ Cos235° + cos250° + cos240° + cos255° ​

(Multiple Choice)
4.8/5
(37)

Use a graphing utility to graph the function. f(x)=(sin2xcosx)f ( x ) = \left( \sin ^ { 2 } x - \cos x \right)

(Multiple Choice)
4.8/5
(36)

Which of the following is a solution to the given equation? 2cosx1=02 \cos x - 1 = 0

(Multiple Choice)
4.9/5
(29)

Solve the following equation. 12sec2x16=012 \sec ^ { 2 } x - 16 = 0

(Multiple Choice)
4.8/5
(40)

Find the rate of change of the function f(x)=cscxcosxf ( x ) = - \csc x - \cos x .

(Multiple Choice)
5.0/5
(38)

Find the exact value of the given expression. cos(300+135)\cos \left( 300 ^ { \circ } + 135 ^ { \circ } \right)

(Multiple Choice)
4.8/5
(36)

Solve the multiple-angle equation. tanx2=33\tan \frac { x } { 2 } = \frac { \sqrt { 3 } } { 3 }

(Multiple Choice)
4.8/5
(34)
Showing 81 - 100 of 265
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)