Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Multiply; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent. (cotx+1)2( \cot x + 1 ) ^ { 2 }

(Multiple Choice)
4.8/5
(34)

Which of the following expressions is equivalent to 2 - 4 cos2x + 4 cos4x? ​

(Multiple Choice)
4.8/5
(40)

Use inverse functions where needed to find all solutions of the equation in the interval [0, 2 π\pi ). cot2x25=0\cot ^ { 2 } x - 25 = 0

(Multiple Choice)
4.9/5
(42)

Use fundamental identities to simplify the expression below and then determine which of the following is not equivalent. sin(π2x)cscx\sin \left( \frac { \pi } { 2 } - x \right) \csc x

(Multiple Choice)
4.9/5
(34)

Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) , where C=arctan(b/a),a=3,b=,B=1C = \arctan ( b / a ) , a = 3 , b = , B = 1 to rewrite the trigonometric expression in the following form. y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta

(Multiple Choice)
4.9/5
(44)

Solve the following equation. tan4x1=0\tan ^ { 4 } x - 1 = 0

(Multiple Choice)
4.8/5
(41)

Perform the multiplication and use the fundamental identities to simplify. (sinxcosx)2( \sin x - \cos x ) ^ { 2 }

(Multiple Choice)
4.8/5
(32)

Use the sum-to-product formulas to rewrite the sum or difference as a product. cos12θ+cos8θ\cos 12 \theta + \cos 8 \theta

(Multiple Choice)
4.9/5
(35)

Evaluate the expression. 1tanx+cotx\frac { 1 } { \tan x + \cot x }

(Multiple Choice)
4.8/5
(35)

Evaluate the following expression.(x ≠ π/2+πn, where n is a whole number) ​ Sec5x (sec x tan x) - ​sec3x (sec x tan x) ​

(Multiple Choice)
4.9/5
(35)

Evaluate the following expression.(t \neq π\pi /2+ π\pi n, where n is a whole number) 2sintcsc(π2t)2 \sin t \csc \left( \frac { \pi } { 2 } - t \right)

(Multiple Choice)
4.8/5
(33)

Evaluate the following expression. cos2xcos2ysin2x+sin2y+sin2xsin2ycos2x+cos2y\frac { \cos 2 x - \cos 2 y } { \sin 2 x + \sin 2 y } + \frac { \sin 2 x - \sin 2 y } { \cos 2 x + \cos 2 y }

(Multiple Choice)
4.9/5
(37)

Use the given values to evaluate (if possible) three trigonometric functions cos x, csc x, tan x. sinx=15\sin x = \frac { 1 } { 5 } , cosx>0\cos x > 0

(Multiple Choice)
4.9/5
(37)

Evaluate the following expression.(x \neq π\pi /10 + π\pi n, where n is a whole number) 5cos5x5cos5x1tan5x5 \cos 5 x - \frac { 5 \cos 5 x } { 1 - \tan 5 x }

(Multiple Choice)
4.9/5
(39)

Simplify the following expression algebraically. 4sin(3π2+θ)4 \sin \left( \frac { 3 \pi } { 2 } + \theta \right)

(Multiple Choice)
4.9/5
(36)

Use a graphing utility to approximate the solutions (to three decimal places) of the given equation in the interval [0, 2 π\pi ). sin2x+1.5cosx=0\sin 2 x + 1.5 \cos x = 0

(Multiple Choice)
4.7/5
(41)

Find the expression as the sine of an angle. sin5cos1.7cos5sin1.7\sin 5 \cos 1.7 - \cos 5 \sin 1.7

(Multiple Choice)
5.0/5
(44)

Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) , where C=arctan(b/a),a=18,b=6,B=3C = \arctan ( b / a ) , a = 18 , b = 6 , B = 3 , to rewrite the trigonometric expression in the following form. y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta

(Multiple Choice)
4.8/5
(33)

Convert the expression. (2sinx+2cosx)2( 2 \sin x + 2 \cos x ) ^ { 2 }

(Multiple Choice)
4.8/5
(33)

Factor; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent. sin3xsin2xsinx+1\sin ^ { 3 } x - \sin ^ { 2 } x - \sin x + 1

(Multiple Choice)
4.9/5
(39)
Showing 181 - 200 of 265
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)