Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the half-angle formulas to simplify the expression. 1cos(x3)2- \sqrt { \frac { 1 - \cos ( x - 3 ) } { 2 } }

(Multiple Choice)
4.9/5
(40)

Solve the multiple-angle equation. 4tan3x=44 \tan 3 x = 4

(Multiple Choice)
4.8/5
(31)

Find all solutions of the following equation in the interval [0, 2 π\pi ). 3secx3tanx=33 \sec x - 3 \tan x = 3

(Multiple Choice)
4.9/5
(38)

Use the sum-to-product formulas to find the exact value of the given expression. cos150+cos30\cos 150 ^ { \circ } + \cos 30 ^ { \circ }

(Multiple Choice)
4.8/5
(42)

Use a graphing utility to determine which of the trigonometric functions is equal to the following expression. cscxsinxcotx\frac { \csc x - \sin x } { \cot x }

(Multiple Choice)
4.9/5
(43)

Use the Quadratic Formula to solve the given equation on the interval [ 0,π20 , \frac { \pi } { 2 } ); then use a graphing utility to approximate the angle x.Round answers to three decimal places. 75cos2x34cosx+3=075 \cos ^ { 2 } x - 34 \cos x + 3 = 0

(Multiple Choice)
4.9/5
(38)

Evaluate the following expression.(x ≠ π/2+πn, where n is a whole number) ​ (tan5x + tan7x) sec2x ​

(Multiple Choice)
4.9/5
(34)

Evaluate the following expression. ​ 2(1 + sin α)(1 - sin α) ​

(Multiple Choice)
4.8/5
(29)

Use fundamental identities to simplify the expression below and then determine which of the following is not equivalent. sinα(cscαsinα)\sin \alpha ( \csc \alpha - \sin \alpha )

(Multiple Choice)
4.9/5
(32)

Use a graphing utility to graph the function. f(x)=5(sin2x+cosx)f ( x ) = 5 \left( \sin ^ { 2 } x + \cos x \right)

(Multiple Choice)
4.8/5
(30)

Use fundamental identities to simplify the expression below and then determine which of the following is not equivalent. sin(π2x)cscx\sin \left( \frac { \pi } { 2 } - x \right) \csc x

(Multiple Choice)
4.9/5
(27)

Solve the following equation. 4cosx+2=04 \cos x + 2 = 0

(Multiple Choice)
4.8/5
(29)

Use a graphing utility to graph the function. f(x)=1.1(2sinx+cos2x)f ( x ) = 1.1 ( 2 \sin x + \cos 2 x )

(Multiple Choice)
4.8/5
(32)

Simplify the following expression algebraically. cos(3π2x)\cos \left( \frac { 3 \pi } { 2 } - x \right)

(Multiple Choice)
4.9/5
(32)

Solve the following equation. 10sinx+5=010 \sin x + 5 = 0

(Multiple Choice)
4.7/5
(37)

Simplify the expression algebraically. 4tan(π4θ)4 \tan \left( \frac { \pi } { 4 } - \theta \right)

(Multiple Choice)
4.8/5
(40)

Find the exact value of sin(u+v)\sin ( u + v ) given that sinu=35\sin u = \frac { 3 } { 5 } and cosv=2425\cos v = - \frac { 24 } { 25 } .(Both u and v are in Quadrant II.)

(Multiple Choice)
4.9/5
(35)

Use the trigonometric substitution to rewrite the algebraic expression as a trigonometric function of θ\theta , where π2<θ<π2- \frac { \pi } { 2 } < \theta < \frac { \pi } { 2 } .Then find sin θ\theta and cos θ\theta . 4=64x2,x=8sinθ4 = \sqrt { 64 - x ^ { 2 } } , x = 8 \sin \theta

(Multiple Choice)
4.8/5
(34)

Use a graphing utility to approximate the solutions (to three decimal places) of the given equation in the interval (π2,π2)\left( - \frac { \pi } { 2 } , \frac { \pi } { 2 } \right) . 6sin2x8cosx+9sinx=66 \sin 2 x - 8 \cos x + 9 \sin x = 6

(Multiple Choice)
4.8/5
(37)

Use the product-to-sum formulas to rewrite the product as a sum or difference. 10cos45cos2010 \cos 45 ^ { \circ } \cos 20 ^ { \circ }

(Multiple Choice)
4.8/5
(44)
Showing 21 - 40 of 265
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)