Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) , where C=arctan(a/b),a=3,b=7,B=2C = \arctan ( a / b ) , a = 3 , b = 7 , B = 2 to rewrite the trigonometric expression in the following form. y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta

(Multiple Choice)
4.9/5
(40)

Find the exact value of cos(u+v)\cos ( u + v ) given that sinu=817\sin u = \frac { 8 } { 17 } and cosv=6061\cos v = - \frac { 60 } { 61 } .(Both u and v are in Quadrant II.)

(Multiple Choice)
4.9/5
(46)

Find the exact solutions of the given equation in the interval [0,2π)[ 0,2 \pi ) . sin 4x= -2sin 2x

(Multiple Choice)
4.8/5
(45)

Rewrite the expression as a single logarithm and simplify the result. lncosxlnsinx\ln | \cos x | - \ln | \sin x |

(Multiple Choice)
4.9/5
(45)

Use the formula asinBθ+bcosBθ=a2+b2sin(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta - C ) , where C=arctan(a/b),a=2,b=8,B=1C = \arctan ( a / b ) , a = 2 , b = 8 , B = 1 , to rewrite the trigonometric expression in the following form. y=a2+b2sin(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta - C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta

(Multiple Choice)
4.8/5
(41)

Find all solutions of the following equation in the interval [0, 2 π\pi ). 4tanx+43=04 \tan x + 4 \sqrt { 3 } = 0

(Multiple Choice)
4.8/5
(46)

Simplify the expression algebraically. sin(7x+7y)+sin(7x7y)\sin ( 7 x + 7 y ) + \sin ( 7 x - 7 y )

(Multiple Choice)
4.8/5
(39)

Evaluate the following expression.( θ\theta \neq π\pi n, where n is a whole number) 5cos4θcot4θ1sin4θ5\frac { 5 \cos 4 \theta \cot 4 \theta } { 1 - \sin 4 \theta } - 5

(Multiple Choice)
4.9/5
(36)

Evaluate the following expression.(a \neq π\pi /2+ π\pi n, where n is a whole number) 5tan2θsecθ\frac { 5 \tan ^ { 2 } \theta } { \sec \theta }

(Multiple Choice)
4.8/5
(40)

Use the trigonometric substitution u = a tan θ\theta , where 0 < θ\theta < π\pi /2 and to simplify the expression a2+u2\sqrt { a ^ { 2 } + u ^ { 2 } } .

(Multiple Choice)
4.8/5
(37)

Use the product-to-sum formulas to rewrite the product as a sum or difference. 4cosπ2sin5π44 \cos \frac { \pi } { 2 } \sin \frac { 5 \pi } { 4 }

(Multiple Choice)
4.7/5
(48)

Simplify the following expression algebraically. 7cos(π+x)7 \cos ( \pi + x )

(Multiple Choice)
4.9/5
(38)

Solve the multiple-angle equation. sinx2=22\sin \frac { x } { 2 } = \frac { \sqrt { 2 } } { 2 }

(Multiple Choice)
4.9/5
(32)

Use the given values to evaluate (if possible) three trigonometric functions cos x, sin x, tan x. secx=4,sinx>0\sec x = 4 , \sin x > 0

(Multiple Choice)
4.8/5
(37)

Rewrite the expression as a single logarithm and simplify the result. lnsecx+lnsinx\ln | \sec x | + \ln | \sin x |

(Multiple Choice)
4.8/5
(38)

Solve the following equation. 2tan23x=62 \tan ^ { 2 } 3 x = 6

(Multiple Choice)
4.7/5
(29)

Use a graphing utility to graph the function. f(x)=2(sinxcosx)f ( x ) = 2 ( \sin x \cos x )

(Multiple Choice)
4.8/5
(38)

Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) , where C=arctan(b/a),a=1,b=3,B=2C = \arctan ( b / a ) , a = 1 , b = 3 , B = 2 , to rewrite the trigonometric expression in the following form. y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) asinBθ+bcosBθa \sin B \theta + b \cos B \theta

(Multiple Choice)
4.8/5
(30)

Find all solutions of the following equation in the interval [0, 2 π\pi ). sin3x=sinx\sin ^ { 3 } x = \sin x

(Multiple Choice)
4.8/5
(29)

If x = 4 cot θ\theta , use trigonometric substitution to write 16+x2\sqrt { 16 + x ^ { 2 } } as a trigonometric function of θ\theta , where 0 < θ\theta < π\pi .

(Multiple Choice)
4.8/5
(44)
Showing 221 - 240 of 265
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)