Exam 9: Inferences Based on Two Samples

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Which of the following statements are not true about the F distribution with parameters v1 and v2 ? v _ { 1 } \text { and } v _ { 2 } \text { ? }

(Multiple Choice)
4.8/5
(37)

Give as much information as you can about the P-value of the F test in each of the following situations: a. v1=5,v2=10, upper-tailed test, f=3.08v _ { 1 } = 5 , v _ { 2 } = 10 , \text { upper-tailed test, } f = 3.08 b. v1=5,v2=10, upper-tailed test, f=2.15v _ { 1 } = 5 , v _ { 2 } = 10 , \text { upper-tailed test, } f = 2.15 c. v1=5,v2=10, two-tailed test, f=10.48v _ { 1 } = 5 , v _ { 2 } = 10 , \text { two-tailed test, } f = 10.48 d. v1=5,v2=10, lower-tailed test, f=.16v _ { 1 } = 5 , v _ { 2 } = 10 , \text { lower-tailed test, } f = .16 e. v1=35,v2=20, upper-tailed test, f=3.24v _ { 1 } = 35 , v _ { 2 } = 20 , \text { upper-tailed test, } f = 3.24

(Essay)
4.8/5
(28)

Let μ1\mu _ { 1 } denote true average tread life for a premium brand of radial tire and let μ2\mu _ { 2 } denote the true average tread life for an economy brand of the same size. Test H0:μ1μ2=5000H _ { 0 } : \mu _ { 1 } - \mu _ { 2 } = 5000 versus Ha:μ1μ2>5000H _ { a } : \mu _ { 1 } - \mu _ { 2 } > 5000 at level .01 using the following statistics: m=50,xˉ=43,000,s1=2200m = 50 , \bar { x } = 43,000 , s _ { 1 } = 2200 n=50,yˉ=37,000, and s2=1500n = 50 , \bar { y } = 37,000 , \text { and } s _ { 2 } = 1500

(Essay)
4.7/5
(45)

Let XBin(m,p1) and YBin(n,p2)X \square \operatorname { Bin } \left( m , p _ { 1 } \right) \text { and } Y \square \operatorname { Bin } \left( n , p _ { 2 } \right) with X and Y independent variables, and let p^1=X/m and p^2=Y/n\hat { p } _ { 1 } = X / m \text { and } \hat { p } _ { 2 } = Y/ n Which of the following statements are not correct?

(Multiple Choice)
4.7/5
(27)

Let X1,X2,,XmX _ { 1 } , X _ { 2 } , \ldots \ldots , X _ { \mathrm { m } } be a random sample from a normal population with mean μ1 and known variance σ12\mu _ { 1 } \text { and known variance } \sigma _ { 1 } ^ { 2 } \text {, } and let Y1,Y2,,YnY _ { 1 } , Y _ { 2 } , \ldots \ldots , Y _ { n } be a random sample from a normal population with mean μ2 and variance σ22\mu _ { 2 } \text { and variance } \sigma _ { 2 } ^ { 2 } \text {, } and that the X and Y samples are independent of one another. Which of the following statements are true?

(Multiple Choice)
4.9/5
(37)

A sample of 300 urban adult residents of in Michigan revealed 63 who favored increasing the highway speed limit from 55 to 70mph, whereas a sample of 180 rural residents yielded 72 who favored the increase. Does this data indicate that the sentiment for increasing the speed limit is different for the two groups of residents? Test H0:p1=p2 versus Ha:p1p2H _ { 0 } : p _ { 1 } = p _ { 2 } \text { versus } H _ { a } : p _ { 1 } \neq p _ { 2 } using α=.05\alpha = .05 , where p1p _ { 1 } refers to the urban population.

(Essay)
4.9/5
(41)

Which of the following statements are true?

(Multiple Choice)
4.8/5
(42)

A 95% confidence interval for μD\mu _ { D } the true mean difference in paired data, where dˉ=20,sD=12\bar { d } = 20 , s _ { D } = 12  and n=15\text { and } n = 15 is determined by

(Multiple Choice)
4.9/5
(34)

Two independent samples of sizes m and n and variances S12 and S22 { S } _ { 1 } ^ { 2 } \text { and } S _ { 2 } ^ { 2 } are selected at random from two normal distributions with variances σ12 and σ22σ _ { 1 } ^ { 2 } \text { and } σ _ { 2 } ^ { 2 } \text {. } In testing Ho:σ12=σ22 versus Ho:σ12σ22H _ { o } : σ _ { 1 } ^ { 2 } = \sigma _ { 2 } ^ { 2 } \text { versus } H _ { o} : σ _ { 1 } ^ { 2 } \neq \sigma _ { 2 } ^ { 2 } \text {, } where the test statistic value is f=s12/s22,f = s _ { 1 } ^ { 2 } / s _ { 2 } ^ { 2 } , the rejection region for a level .05 test is either ff \geq\underline{\quad\quad} or ff \leq\underline{\quad\quad}

(Essay)
4.8/5
(33)

Suppose μ1 and μ2\mu _ { 1 } \text { and } \mu _ { 2 } are true mean stopping distances at 50 mph for cars of a certain type equipped with two different types of braking systems. Use the two-sample tt test at significance level .01 to test H0:μ1μ2=10 versus Ha:μ1μ2<10H _ { 0 } : \mu _ { 1 } - \mu _ { 2 } = - 10 \text { versus } H _ { a } : \mu _ { 1 } - \mu _ { 2 } < - 10 for the following statistics: m=6,xˉ=116,s1=5.0,n=6,yˉ=129, and s2=5.5m = 6 , \bar { x } = 116 , s _ { 1 } = 5.0 , n = 6 , \bar { y } = 129 , \text { and } s _ { 2 } = 5.5

(Essay)
5.0/5
(40)

Two different types of alloy, A and B, have been used to manufacture experimental specimens of a small tension link to be used in a certain engineering application. The ultimate strength (ksi) of each specimen was determined, and the results are summarized in the accompanying frequency distribution. A B 26-<30 6 4 30-<34 12 9 34-<38 15 19 38-<42 7 10 m=40 n=42 Compute a 95% CI for the difference between the true proportions of all specimens of alloys A and B that have an ultimate strength of at least 34 ksi.

(Essay)
4.8/5
(36)

Tensile strength tests were carried out on two different grades of wire rod resulting in the accompanying data: Grade Sample Size Sample Mean Sample St. Dev. / AISI m= = = 1064 130 108 1.3 AISI n= = = 1078 130 124 2.0 a. Does the data provide compelling evidence for concluding that "true" average strength for the 1078 grade exceeds that for the 1064 grade by more than 10 kg/mm2\mathrm { kg } / \mathrm { mm } ^ { 2 } ? Test the appropriate hypotheses using the PP -value approach. b. Estimate the difference between true average strengths for the two grades in a way that provides information about precision and reliability.

(Essay)
4.7/5
(36)

Suppose μ1 and μ2\mu _ { 1 } \text { and } \mu _ { 2 } are true mean stopping distances at 50 mph for cars of a certain type equipped with two different types of braking systems. The following statistics are given: m = 6, xˉ=116,s1=5.0,n=6,yˉ=129, and s2=5.5\bar { x } = 116 , s _ { 1 } = 5.0 , n = 6 , \bar { y } = 129 \text {, and } s _ { 2 } = 5.5 Calculate a 95% CI for the difference between true average stopping distance for cars equipped with system 1 and cars equipped with system 2. Does the interval suggest that precise information about the value of this difference is available?

(Essay)
4.9/5
(45)

In testing H0:p1p2=0 versus H0:p1p2>0, where p1 and p2H _ { 0 } : p _ { 1 } - p _ { 2 } = 0 \text { versus } H _ { 0 } : p _ { 1 } - p _ { 2 } > 0 \text {, where } p _ { 1 } \text { and } p _ { 2 } denote the two population proportions, and both sample sizes are assumed to be large, the rejection region for approximate level .025 test is

(Multiple Choice)
4.9/5
(34)

In testing H0:p1p2=0 versus Hat :p1p2<0 where p1 and p2H _ { 0 } : p _ { 1 } - p _ { 2 } = 0 \text { versus } H _ { \text {at } } : p _ { 1 } - p _ { 2 } < 0 \text { where } p _ { 1 } \text { and } p _ { 2 } denote the two population properties, the P-value is found to be .0715. Then at .05 level, HoH _ { o } should __________.

(Short Answer)
4.8/5
(46)

Let X1,,XmX _ { 1 } , \ldots \ldots , X _ { m } be a random sample from a normal distribution with variance σ12, let Y1,,Yn\sigma _ { 1 } ^ { 2 } , \text { let } Y _ { 1 } , \ldots \ldots , Y _ { n } be another random sample (independent of the X2s)\left. X _ { 2 } ^ { \prime } s \right) from a normal distribution with variance σ22, and letS12 and S22\sigma _ { 2 } ^ { 2 } , \text { and } \mathrm { let } S _ { 1 } ^ { 2 } \text { and } S _ { 2 } ^ { 2 } denote the two sample variances. Which of the following statements are not true?

(Multiple Choice)
4.7/5
(28)

Which of the following statements are not necessarily true?

(Multiple Choice)
4.8/5
(31)

In testing H0:p1p2=0 versus Hat :p1p2>0 where p1 and p2H _ { 0 } : p _ { 1 } - p _ { 2 } = 0 \text { versus } H _ { \text {at } } : p _ { 1 } - p _ { 2 } > 0 \text { where } p _ { 1 } \text { and } p _ { 2 } denote the two population proportions, the following summary statistics are given: m = 400, x = 140, n = 500 and y = 160. Then the value of the test statistic is z = __________.

(Short Answer)
4.8/5
(40)

In an experiment designed to study the effects of illumination level on task performance, subjects were required to insert a fine-tipped probe into the eyeholes of ten needles in rapid succession both for a low light level with black background and a higher level with a white background. Each data value is the time (sec) required to complete the task. Subject Black 25.01 41.05 27.47 25.74 24.96 28.84 25.85 20.89 32.05 White 16.61 24.98 24.59 19.68 16.07 20.84 18.23 19.50 22.96 Compute in interval estimate for the difference between true average task time under the high illumination level and true average time under the low level.

(Essay)
4.8/5
(38)

Which of the following statements are not true?

(Multiple Choice)
4.8/5
(39)
Showing 41 - 60 of 73
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)