Exam 19: Multiple Regression

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Pop-up coffee vendors have been popular in the city of Adelaide in 2013. A vendor is interested in knowing how temperature (in degrees Celsius) and number of different pastries and biscuits offered to customers impacts daily hot coffee sales revenue (in $00's). A random sample of 6 days was taken, with the daily hot coffee sales revenue and the corresponding temperature and number of different pastries and biscuits offered on that day, noted. Excel output for a multiple linear regression is given below: Coffee sales revenue Temperature Pastries/biscuits 6.5 25 7 10 17 13 5.5 30 5 4.5 35 6 3.5 40 3 28 9 15 SUMMARV OUTPUT Regression Stotistics Multiple R 0.87 R Square 0.75 Adjusted R Square 0.59 Standard Error 5.95 Otservations 6.00 ANOVA Significonce df SS MS F F Regression 2.00 322.14 161.07 4.55 0.12 Residual 3.00 106.20 35.40 Total 5.00 428.33 Coefficients Standard Error tStot Pvolue Lower 95\% Upper 95\% Intercept 18.68 37.8 0.49 0.66 -101.88 139.24 Temperature -0.50 0.83 -0.60 0.59 -3.15 2.15 Patries/bisouits 0.49 2.02 0.24 0.82 -5.94 6.92 Test the significance of the coefficient on Pasties/biscuits against a two tailed alternative. Use the 5% level of significance.

(Essay)
5.0/5
(33)

Which of the following measures can be used to assess a multiple regression model's fit?

(Multiple Choice)
5.0/5
(26)

An economist wanted to develop a multiple regression model to enable him to predict the annual family expenditure on clothes. After some consideration, he developed the multiple regression model: y=β0+β1x1+β2x2+β3x3+εy = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 3 } + \varepsilon . Where: y = annual family clothes expenditure (in $1000s) x1x _ { 1 } = annual household income (in $1000s) x2x _ { 2 } = number of family members x3x _ { 3 } = number of children under 10 years of age The computer output is shown below. THE REGRESSION EQUATION IS y=y = 1.74+0.091x1+0.93x2+0.26x31.74 + 0.091 x _ { 1 } + 0.93 x _ { 2 } + 0.26 x _ { 3 } Predictor Coef StDev Constant 1.74 0.630 2.762 0.091 0.025 3.640 0.93 0.290 3.207 0.26 0.180 1.444 S = 2.06 R-Sq = 59.6%. ANALYSIS OF VARIANCE Source of Variation Regression 3 288 96 22.647 Error 46 195 4.239 Total 49 483 Interpret the coefficient b2b _ { 2 } .

(Essay)
4.7/5
(36)

Pop-up coffee vendors have been popular in the city of Adelaide in 2013. A vendor is interested in knowing how temperature (in degrees Celsius) and number of different pastries and biscuits offered to customers impacts daily hot coffee sales revenue (in $00's). A random sample of 6 days was taken, with the daily hot coffee sales revenue and the corresponding temperature and number of different pastries and biscuits offered on that day, noted. Excel output for a multiple linear regression is given below: Coffee sales revenue Temperature Pastries/biscuits 6.5 25 7 10 17 13 5.5 30 5 4.5 35 6 3.5 40 3 28 9 15 SUMMARV OUTPUT Regression Stotistics Multiple R 0.87 R Square 0.75 Adjusted R Square 0.59 Standard Error 5.95 Otservations 6.00 ANOVA Significonce df SS MS F F Regression 2.00 322.14 161.07 4.55 0.12 Residual 3.00 106.20 35.40 Total 5.00 428.33 Coefficients Standard Error tStot Pvolue Lower 95\% Upper 95\% Intercept 18.68 37.8 0.49 0.66 -101.88 139.24 Temperature -0.50 0.83 -0.60 0.59 -3.15 2.15 Patries/bisouits 0.49 2.02 0.24 0.82 -5.94 6.92 Test the significance of the overall regression model, at α of 5%.

(Essay)
4.8/5
(28)

Test the hypotheses: H0:H _ { 0 } : There is no first-order autocorrelation H1:H _ { 1 } : There is negative first-order autocorrelation, given that the Durbin-Watson statistic d = 2.50, n = 40, k = 3 and α=\alpha = 0.05.

(Essay)
4.8/5
(34)

The graphical depiction of the equation of a multiple regression model with k independent variables (k > 1) is referred to as:

(Multiple Choice)
4.8/5
(37)

In a multiple regression model, the mean of the probability distribution of the error variable ε\varepsilon is assumed to be:

(Multiple Choice)
4.8/5
(41)

A statistics professor investigated some of the factors that affect an individual student's final grade in his or her course. He proposed the multiple regression model: y=β0+β1x1+β2x2+β3x3+εy = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 3 } + \varepsilon . Where: y = final mark (out of 100). x1x _ { 1 } = number of lectures skipped. x2x _ { 2 } = number of late assignments. x3x _ { 3 } = mid-term test mark (out of 100). The professor recorded the data for 50 randomly selected students. The computer output is shown below. THE REGRESSION EQUATION IS  A statistics professor investigated some of the factors that affect an individual student's final grade in his or her course. He proposed the multiple regression model:  y = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 3 } + \varepsilon  . Where: y = final mark (out of 100).  x _ { 1 }  = number of lectures skipped.  x _ { 2 }  = number of late assignments.  x _ { 3 }  = mid-term test mark (out of 100). The professor recorded the data for 50 randomly selected students. The computer output is shown below. THE REGRESSION EQUATION IS   =  41.6 - 3.18 x _ { 1 } - 1.17 x _ { 2 } + .63 x _ { 3 }   \begin{array} { | c | c c c | }  \hline \text { Predictor } & \text { Coef } & \text { StDev } & \mathrm { T } \\ \hline \text { Constant } & 41.6 & 17.8 & 2.337 \\ x _ { 1 } & - 3.18 & 1.66 & - 1.916 \\ x _ { 2 } & - 1.17 & 1.13 & - 1.035 \\ x _ { 3 } & 0.63 & 0.13 & 4.846 \\ \hline \end{array}  S = 13.74 R-Sq = 30.0%.  \begin{array}{l} \text { ANALYSIS OF VARIANCE }\\ \begin{array} { | l | c c c c | }  \hline \text { Source of Variation } & \mathrm { df } & \text { SS } & \text { MS } & \text { F } \\ \hline \text { Regression } & 3 & 3716 & 1238.667 & 6.558 \\ \text { Error } & 46 & 8688 & 188.870 & \\ \hline \text { Total } & 49 & 12404 & & \\ \hline \end{array} \end{array}  Do these data provide enough evidence to conclude at the 5% significance level that the final mark and the number of skipped lectures are linearly related? = 41.63.18x11.17x2+.63x341.6 - 3.18 x _ { 1 } - 1.17 x _ { 2 } + .63 x _ { 3 } Predictor Coef StDev Constant 41.6 17.8 2.337 -3.18 1.66 -1.916 -1.17 1.13 -1.035 0.63 0.13 4.846 S = 13.74 R-Sq = 30.0%. ANALYSIS OF VARIANCE Source of Variation SS MS F Regression 3 3716 1238.667 6.558 Error 46 8688 188.870 Total 49 12404 Do these data provide enough evidence to conclude at the 5% significance level that the final mark and the number of skipped lectures are linearly related?

(Essay)
4.7/5
(39)

A statistics professor investigated some of the factors that affect an individual student's final grade in his or her course. He proposed the multiple regression model: y=β0+β1x1+β2x2+β3x3+εy = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 3 } + \varepsilon . Where: y = final mark (out of 100). x1x _ { 1 } = number of lectures skipped. x2x _ { 2 } = number of late assignments. x3x _ { 3 } = mid-term test mark (out of 100). The professor recorded the data for 50 randomly selected students. The computer output is shown below. THE REGRESSION EQUATION IS  A statistics professor investigated some of the factors that affect an individual student's final grade in his or her course. He proposed the multiple regression model:  y = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 3 } + \varepsilon  . Where: y = final mark (out of 100).  x _ { 1 }  = number of lectures skipped.  x _ { 2 }  = number of late assignments.  x _ { 3 }  = mid-term test mark (out of 100). The professor recorded the data for 50 randomly selected students. The computer output is shown below. THE REGRESSION EQUATION IS   =  41.6 - 3.18 x _ { 1 } - 1.17 x _ { 2 } + .63 x _ { 3 }   \begin{array} { | c | c c c | }  \hline \text { Predictor } & \text { Coef } & \text { StDev } & \mathrm { T } \\ \hline \text { Constant } & 41.6 & 17.8 & 2.337 \\ x _ { 1 } & - 3.18 & 1.66 & - 1.916 \\ x _ { 2 } & - 1.17 & 1.13 & - 1.035 \\ x _ { 3 } & 0.63 & 0.13 & 4.846 \\ \hline \end{array}  S = 13.74 R-Sq = 30.0%.  \begin{array}{l} \text { ANALYSIS OF VARIANCE }\\ \begin{array} { | l | c c c c | }  \hline \text { Source of Variation } & \mathrm { df } & \text { SS } & \text { MS } & \text { F } \\ \hline \text { Regression } & 3 & 3716 & 1238.667 & 6.558 \\ \text { Error } & 46 & 8688 & 188.870 & \\ \hline \text { Total } & 49 & 12404 & & \\ \hline \end{array} \end{array}  Do these data provide enough evidence at the 5% significance level to conclude that the final mark and the number of late assignments are negatively linearly related? = 41.63.18x11.17x2+.63x341.6 - 3.18 x _ { 1 } - 1.17 x _ { 2 } + .63 x _ { 3 } Predictor Coef StDev Constant 41.6 17.8 2.337 -3.18 1.66 -1.916 -1.17 1.13 -1.035 0.63 0.13 4.846 S = 13.74 R-Sq = 30.0%. ANALYSIS OF VARIANCE Source of Variation SS MS F Regression 3 3716 1238.667 6.558 Error 46 8688 188.870 Total 49 12404 Do these data provide enough evidence at the 5% significance level to conclude that the final mark and the number of late assignments are negatively linearly related?

(Essay)
4.8/5
(38)

For each x term in the multiple regression equation, the corresponding β\beta is referred to as a partial regression coefficient or slope of the independent variable.

(True/False)
4.9/5
(36)

An economist wanted to develop a multiple regression model to enable him to predict the annual family expenditure on clothes. After some consideration, he developed the multiple regression model: y=β0+β1x1+β2x2+β3x3+εy = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 3 } + \varepsilon . Where: y = annual family clothes expenditure (in $1000s) x1x _ { 1 } = annual household income (in $1000s) x2x _ { 2 } = number of family members x3x _ { 3 } = number of children under 10 years of age The computer output is shown below. THE REGRESSION EQUATION IS y=y = 1.74+0.091x1+0.93x2+0.26x31.74 + 0.091 x _ { 1 } + 0.93 x _ { 2 } + 0.26 x _ { 3 } Predictor Coef StDev Constant 1.74 0.630 2.762 0.091 0.025 3.640 0.93 0.290 3.207 0.26 0.180 1.444 S = 2.06 R-Sq = 59.6%. ANALYSIS OF VARIANCE Source of Variation Regression 3 288 96 22.647 Error 46 195 4.239 Total 49 483 What is the coefficient of determination? What does this statistic tell you?

(Essay)
4.8/5
(33)

In a multiple regression analysis involving k independent variables and n data points, the number of degrees of freedom associated with the sum of squares for regression is:

(Multiple Choice)
4.8/5
(32)

An economist wanted to develop a multiple regression model to enable him to predict the annual family expenditure on clothes. After some consideration, he developed the multiple regression model: y=β0+β1x1+β2x2+β3x3+εy = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 3 } + \varepsilon . Where: y = annual family clothes expenditure (in $1000s) x1x _ { 1 } = annual household income (in $1000s) x2x _ { 2 } = number of family members x3x _ { 3 } = number of children under 10 years of age The computer output is shown below. THE REGRESSION EQUATION IS y=y = 1.74+0.091x1+0.93x2+0.26x31.74 + 0.091 x _ { 1 } + 0.93 x _ { 2 } + 0.26 x _ { 3 } Predictor Coef StDev Constant 1.74 0.630 2.762 0.091 0.025 3.640 0.93 0.290 3.207 0.26 0.180 1.444 S = 2.06 R-Sq = 59.6%. ANALYSIS OF VARIANCE Source of Variation Regression 3 288 96 22.647 Error 46 195 4.239 Total 49 483 Test at the 1% significance level to determine whether the number of family members and annual family clothes expenditure are linearly related.

(Essay)
5.0/5
(31)

In order to test the significance of a multiple regression model involving 4 independent variables and 30 observations, the number of degrees of freedom for the numerator and denominator for the critical value of F are 4 and 26, respectively.

(True/False)
4.9/5
(31)

A statistician wanted to determine whether the demographic variables of age, education and income influence the number of hours of television watched per week. A random sample of 25 adults was selected to estimate the multiple regression model y=β0+β1x1+β2x2+β3x3+εy = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 3 } + \varepsilon . Where: y = number of hours of television watched last week. x1x _ { 1 } = age. x2x _ { 2 } = number of years of education. x3x _ { 3 } = income (in $1000s). The computer output is shown below. THE REGRESSION EQUATION IS y=y = 22.3+0.41x10.29x20.12x322.3 + 0.41 x _ { 1 } - 0.29 x _ { 2 } - 0.12 x _ { 3 } Predictor Coef StDev Constant 22.3 10.7 2.084 0.41 0.19 2.158 -0.29 0.13 -2.231 -0.12 0.03 -4.00 S = 4.51 R-Sq = 34.8%. ANALYSIS OF VARIANCE Source of Variation df SS MS F Regression 3 227 75.667 3.730 Error 21 426 20.286 Total 24 653 Is there sufficient evidence at the 1% significance level to indicate that hours of television watched and age are linearly related?

(Essay)
4.8/5
(31)

In multiple regression, the Durbin-Watson test is used to determine if there is autocorrelation in the regression model

(True/False)
4.8/5
(32)

Which of the following best describes a multiple linear regression model?

(Multiple Choice)
4.9/5
(36)

The problem of multicollinearity arises when the:

(Multiple Choice)
4.9/5
(34)

Which of the following best describes the Durbin-Watson test?

(Multiple Choice)
4.8/5
(36)

When the independent variables are correlated with one another in a multiple regression analysis, this condition is called:

(Multiple Choice)
5.0/5
(40)
Showing 81 - 100 of 121
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)