Exam 6: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use Identities to Solve Trigonometric Equations Solve the equation on the interval [0, 2π). - tan2xtanx=0\tan 2 x - \tan x = 0

(Multiple Choice)
4.8/5
(34)

Use Sum and Difference Formulas for Cosines and Sines - sin195cos75cos195sin75\sin 195 ^ { \circ } \cos 75 ^ { \circ } - \cos 195 ^ { \circ } \sin 75 ^ { \circ }

(Multiple Choice)
4.7/5
(47)

Use the Power-Reducing Formulas - cos3x\cos ^ { 3 } x

(Multiple Choice)
5.0/5
(35)

Use substitution to determine whether the given x-value is a solution of the equation. Find All Solutions of a Trigonometric Equation - cos2x=2,x=3π4\cos 2 x = - \sqrt { 2 } , \quad x = \frac { 3 \pi } { 4 }

(Multiple Choice)
4.9/5
(44)

Complete the identity. - csc2xsecx=\csc ^ { 2 } x \sec x = ?

(Multiple Choice)
4.8/5
(39)

Complete the identity. - sin4xcos4x=\sin ^ { 4 } x - \cos ^ { 4 } x = ?

(Multiple Choice)
4.8/5
(38)

Use the graph to complete the identity. - cscx+tan2xcscx;cosx\csc x + \tan ^ { 2 } x \csc x ; \cos x and sinx\sin x

(Multiple Choice)
4.8/5
(36)

Use the figure to find the exact value of the trigonometric function. - sinθ=1213,θ\sin \theta = \frac { 12 } { 13 } , \theta lies in quadrant I\mathrm { I } \quad Find cos2θ\cos 2 \theta .

(Multiple Choice)
4.9/5
(30)

Solve Apps: Trigonometric Equations -The weekly sales in thousands of items of a product has a seasonal sales record approximated by n=84.37+15sinπt24\mathrm { n } = 84.37 + 15 \sin \frac { \pi \mathrm { t } } { 24 } ( t\mathrm { t } is time in weeks with t=1\mathrm { t } = 1 referring to the first week in the year). During which week(s) will the sales equal 91,870 items?

(Multiple Choice)
4.8/5
(37)

Use the given information to find the exact value of the expression. - sinα=2029,α\sin \alpha = \frac { 20 } { 29 } , \alpha lies in quadrant I\mathrm { I } , and cosβ=45,β\cos \beta = \frac { 4 } { 5 } , \beta lies in quadrant I \quad Find cos(α+β)\cos ( \alpha + \beta )

(Multiple Choice)
5.0/5
(31)

Use Sum and Difference Formulas for Tangents Find the exact value by using a difference identity. - tan175tan551+tan175tan55\frac { \tan 175 ^ { \circ } - \tan 55 ^ { \circ } } { 1 + \tan 175 ^ { \circ } \tan 55 ^ { \circ } }

(Multiple Choice)
4.9/5
(38)

Use The Half-Angle Formulas - tan165\tan 165 ^ { \circ }

(Multiple Choice)
4.8/5
(41)

Complete the identity. - (cscx+1)(cscx1)cot2x=?\frac { ( \csc x + 1 ) ( \csc x - 1 ) } { \cot ^ { 2 } x } = ?

(Multiple Choice)
5.0/5
(31)

Complete the identity. - sinx(sin2x+sin4x)=\sin x ( \sin 2 x + \sin 4 x ) = ?

(Multiple Choice)
4.9/5
(34)

Use the graph to complete the identity. - (secx+tanx)(secxtanx)secx=\frac { ( \sec x + \tan x ) ( \sec x - \tan x ) } { \sec x } = ?  Use the graph to complete the identity. - \frac { ( \sec x + \tan x ) ( \sec x - \tan x ) } { \sec x } =  ?

(Multiple Choice)
4.9/5
(35)

Solve the equation on the interval [0, 2π). - sin4x=32\sin 4 x = \frac { \sqrt { 3 } } { 2 }

(Multiple Choice)
4.8/5
(36)

Express the product as a sum or difference. - cos7x2cosx2\cos \frac { 7 x } { 2 } \cos \frac { x } { 2 }

(Multiple Choice)
4.8/5
(32)

Complete the identity. -An airplane flying faster than the speed of sound creates sound waves that form a cone. If α\alpha is the vertex angle of the cone and mm is the Mach number for the speed of the plane, then sinα2=1m(m>1)\sin \frac { \alpha } { 2 } = \frac { 1 } { m } ( m > 1 ) . Find the Mach number to the nearest tenth if α=90\alpha = 90 ^ { \circ } .

(Multiple Choice)
4.9/5
(35)

Complete the identity. - sec4x+sec2xtan2x2tan4x=\sec ^ { 4 } x + \sec ^ { 2 } x \tan ^ { 2 } x - 2 \tan ^ { 4 } x = ?

(Multiple Choice)
4.8/5
(24)

Use the graph to complete the identity. - (secx+cscx)(sinx+cosx)2cotx;tanx( \sec x + \csc x ) ( \sin x + \cos x ) - 2 - \cot x ; \tan x

(Multiple Choice)
4.9/5
(43)
Showing 81 - 100 of 226
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)