Exam 6: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Show that the equation is not an identity by finding a value of x for which both sides are defined but not equal. - cos(x+π)=cosx\cos ( x + \pi ) = \cos x

(Multiple Choice)
4.8/5
(34)

Use substitution to determine whether the given x-value is a solution of the equation. Find All Solutions of a Trigonometric Equation - 2cosx1=02 \cos x - 1 = 0

(Multiple Choice)
4.8/5
(42)

Express the product as a sum or difference. - sin7xcos4x\sin 7 x \cos 4 x

(Multiple Choice)
4.8/5
(45)

Find the exact value under the given conditions. - sinα=2129,0<α<π2;cosβ=725,0<β<π2\sin \alpha = \frac { 21 } { 29 } , 0 < \alpha < \frac { \pi } { 2 } ; \quad \cos \beta = \frac { 7 } { 25 } , 0 < \beta < \frac { \pi } { 2 } \quad Find tan(α+β)\tan ( \alpha + \beta ) .

(Multiple Choice)
4.8/5
(31)

Use Sum and Difference Formulas for Tangents Find the exact value by using a difference identity. - tan70tan(50)1+tan70tan(50)\frac { \tan 70 ^ { \circ } - \tan \left( - 50 ^ { \circ } \right) } { 1 + \tan 70 ^ { \circ } \tan \left( - 50 ^ { \circ } \right) }

(Multiple Choice)
4.9/5
(35)

Use substitution to determine whether the given x-value is a solution of the equation. Find All Solutions of a Trigonometric Equation - sinx=32,x=2π3\sin x = - \frac { \sqrt { 3 } } { 2 } , \quad x = \frac { - 2 \pi } { 3 }

(Multiple Choice)
5.0/5
(32)
Showing 221 - 226 of 226
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)