Exam 6: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Complete the identity. - sin5x+sin7xcos2x+cos4x=?\frac { \sin 5 x + \sin 7 x } { \cos 2 x + \cos 4 x } = ?

(Multiple Choice)
4.8/5
(36)

Verify the identity. - tan(π2+x)=cotx\tan \left( \frac { \pi } { 2 } + x \right) = - \cot x

(Essay)
4.7/5
(28)

Use the graph to complete the identity. - cos3xcos32x+sin3xsin32x=\cos 3 x \cos \frac { 3 } { 2 } x + \sin 3 x \sin \frac { 3 } { 2 } x = ?  Use the graph to complete the identity. - \cos 3 x \cos \frac { 3 } { 2 } x + \sin 3 x \sin \frac { 3 } { 2 } x =  ?

(Multiple Choice)
4.9/5
(31)

Complete the identity - tan(x+π4)=?\tan \left( x + \frac { \pi } { 4 } \right) = ?

(Multiple Choice)
4.8/5
(41)

Use Sum and Difference Formulas for Cosines and Sines - sin25cos35+cos25sin35\sin 25 ^ { \circ } \cos 35 ^ { \circ } + \cos 25 ^ { \circ } \sin 35 ^ { \circ }

(Multiple Choice)
4.8/5
(33)

Use the graph to complete the identity. - cos2x+cosx1+sin2x;cosx\cos ^ { 2 } x + \cos x - 1 + \sin ^ { 2 } x ; \cos x

(Multiple Choice)
4.7/5
(42)

Show that the equation is not an identity by finding a value of x for which both sides are defined but not equal. - sin(x+π)=sinx\sin ( x + \pi ) = \sin x

(Multiple Choice)
4.9/5
(34)

Use Identities to Solve Trigonometric Equations Solve the equation on the interval [0, 2π). - cos2x=2cos2x\cos 2 x = \sqrt { 2 } - \cos 2 x

(Multiple Choice)
4.7/5
(35)

Use Identities to Solve Trigonometric Equations Solve the equation on the interval [0, 2π). - sin3x=0\sin 3 x = 0

(Multiple Choice)
4.8/5
(44)

Verify the identity. - sin(αβ)cos(α+β)=sinαcosαsinβcosβ\sin ( \alpha - \beta ) \cos ( \alpha + \beta ) = \sin \alpha \cos \alpha - \sin \beta \cos \beta

(Essay)
4.9/5
(37)

Verify the identity. - csc2ucosusecu=cot2u\csc ^ { 2 } u - \cos u \sec u = \cot ^ { 2 } u

(Essay)
4.9/5
(39)

Use the Formula for the Cosine of the Difference of Two Angles - cos(5π18π9)\cos \left( \frac { 5 \pi } { 18 } - \frac { \pi } { 9 } \right)

(Multiple Choice)
4.8/5
(44)

Verify the identity. - cos(x+π2)=sinx\cos \left( x + \frac { \pi } { 2 } \right) = - \sin x

(Essay)
5.0/5
(33)

Solve Apps: Trigonometric Equations -The range r\mathrm { r } of a projectile is given by r=132v2sin2θ\mathrm { r } = \frac { 1 } { 32 } \mathrm { v } ^ { 2 } \sin 2 \theta , where v\mathrm { v } is the initial velocity and θ\theta is the angle of elevation. If rr is to be 9000ft9000 \mathrm { ft } and v=5000ft/sec\mathrm { v } = 5000 \mathrm { ft } / \mathrm { sec } , what must the angle of elevation be? Give your answer in degrees to the nearest hundredth.

(Multiple Choice)
4.8/5
(36)

Complete the identity. - cos(α+β)+cos(αβ)=\cos ( \alpha + \beta ) + \cos ( \alpha - \beta ) = ?

(Multiple Choice)
4.8/5
(46)

Use the graph to complete the identity. - cos2xcos5x+sin2xsin5x=?\cos 2 x \cos 5 x + \sin 2 x \sin 5 x = ?  Use the graph to complete the identity. - \cos 2 x \cos 5 x + \sin 2 x \sin 5 x = ?

(Multiple Choice)
4.7/5
(36)

Complete the identity. - sin(α+β)cosαcosβ=?\frac { \sin ( \alpha + \beta ) } { \cos \alpha \cos \beta } = ?

(Multiple Choice)
4.9/5
(46)

Express the product as a sum or difference. - cos3xcos2x\cos 3 x \cos 2 x

(Multiple Choice)
4.7/5
(37)

Use a calculator to solve the equation on the interval [0, 2π). Round the answer to two decimal places. - tanx=5.1\tan x = 5.1

(Multiple Choice)
4.8/5
(33)

Verify the identity. - (1+tan2u)(1sin2u)=1\left( 1 + \tan ^ { 2 } u \right) \left( 1 - \sin ^ { 2 } u \right) = 1

(Essay)
4.8/5
(35)
Showing 181 - 200 of 226
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)