Exam 6: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Complete the identity. - sin4xsin6xcos4xcos6x=\sin 4 x \sin 6 x \cos 4 x \cos 6 x = ?

(Multiple Choice)
4.9/5
(32)

Verify the identity. - cos4θ=2cos2(2θ)1\cos 4 \theta = 2 \cos ^ { 2 } ( 2 \theta ) - 1

(Essay)
4.9/5
(35)

Use substitution to determine whether the given x-value is a solution of the equation. Find All Solutions of a Trigonometric Equation - cosx+1=sinx,x=3π4\cos x + 1 = \sin x , \quad x = \frac { - 3 \pi } { 4 }

(Multiple Choice)
4.8/5
(40)

Complete the identity. - 8sinxcos3x+8sin3xcosx=8 \sin x \cos ^ { 3 } x + 8 \sin ^ { 3 } x \cos x = ?

(Multiple Choice)
4.8/5
(41)

Complete the identity. - cos2xsin2x1tan2x=?\frac { \cos ^ { 2 } x - \sin ^ { 2 } x } { 1 - \tan ^ { 2 } x } = ?

(Multiple Choice)
4.8/5
(42)

Express the sum or difference as a product. - sin75+sin15\sin 75 ^ { \circ } + \sin 15 ^ { \circ }

(Multiple Choice)
4.8/5
(33)

Describe the graph using another equation. - y=cos(x+π2)cos(xπ2)y=\cos \left(x+\frac{\pi}{2}\right)-\cos \left(x-\frac{\pi}{2}\right)  Describe the graph using another equation. - y=\cos \left(x+\frac{\pi}{2}\right)-\cos \left(x-\frac{\pi}{2}\right)

(Multiple Choice)
4.9/5
(41)

Fill in the blank using the word product, sum, quotient, or difference. -The formula sinαsinβ=2sinαβ2cosα+β2\sin \alpha - \sin \beta = 2 \sin \frac { \alpha - \beta } { 2 } \cos \frac { \alpha + \beta } { 2 } can be used to change aـــــــــــ of two sines into the ــــــــــــof a sine and a cosine expression.

(Multiple Choice)
4.9/5
(35)

Use the figure to find the exact value of the trigonometric function. -Find cos2θ\cos 2 \theta .  Use the figure to find the exact value of the trigonometric function. -Find  \cos 2 \theta .

(Multiple Choice)
4.8/5
(27)

Use the Power-Reducing Formulas - sin3x\sin ^ { 3 } x

(Multiple Choice)
4.9/5
(42)

Complete the identity. - sin3x+sin7xcos3x+cos7x=?\frac { \sin 3 x + \sin 7 x } { \cos 3 x + \cos 7 x } = ?

(Multiple Choice)
4.7/5
(45)

Solve Apps: Trigonometric Equations -The output voltage for an AC\mathrm { AC } generator is approximated by v=156cos(120πtπ3)\mathrm { v } = 156 \cos \left( 120 \pi \mathrm { t } - \frac { \pi } { 3 } \right) . Find the smallest positive value of tt for which the output is 125 volts.

(Multiple Choice)
4.9/5
(31)

Verify the identity. - sinαsinβsinα+sinβ=tanαβ2cotα+β2\frac { \sin \alpha - \sin \beta } { \sin \alpha + \sin \beta } = \tan \frac { \alpha - \beta } { 2 } \cot \frac { \alpha + \beta } { 2 }

(Essay)
4.8/5
(40)

Verify the identity. - sin4t=2sin2tcos2t\sin 4 t = 2 \sin 2 t \cos 2 t

(Essay)
4.7/5
(31)

Complete the identity. - sinxcosx+cosxsinx=?\frac { \sin x } { \cos x } + \frac { \cos x } { \sin x } = ?

(Multiple Choice)
4.8/5
(44)

Solve the equation on the interval [0, 2π). - sin2x+sinx=0\sin ^ { 2 } x + \sin x = 0

(Multiple Choice)
4.9/5
(34)

Write the expression as the sine, cosine, or tangent of a double angle. Then find the exact value of the expression. - 2tan7π121tan27π12\frac { 2 \tan \frac { 7 \pi } { 12 } } { 1 - \tan ^ { 2 } \frac { 7 \pi } { 12 } }

(Multiple Choice)
4.8/5
(45)

Complete the identity. - 1sin2x1+cosx= ? 1 - \frac { \sin ^ { 2 } x } { 1 + \cos x } = \text { ? }

(Multiple Choice)
4.8/5
(40)

Use Sum and Difference Formulas for Cosines and Sines - cos7π12sin5π12cos5π12sin7π12\cos \frac { 7 \pi } { 12 } \sin \frac { 5 \pi } { 12 } - \cos \frac { 5 \pi } { 12 } \sin \frac { 7 \pi } { 12 }

(Multiple Choice)
4.9/5
(38)

Solve the equation on the interval [0, 2π). - cos2x=22\cos 2 x = \frac { \sqrt { 2 } } { 2 }

(Multiple Choice)
4.9/5
(42)
Showing 41 - 60 of 226
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)