Exam 6: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the Power-Reducing Formulas - sin4x\sin ^ { 4 } x

(Multiple Choice)
4.9/5
(40)

Complete the identity. - (sinx+cosx)21+2sinxcosx=?\frac { ( \sin x + \cos x ) ^ { 2 } } { 1 + 2 \sin x \cos x } = ?

(Multiple Choice)
4.8/5
(35)

Show that the equation is not an identity by finding a value of x for which both sides are defined but not equal. - cos10xcos4xsin10x+sin4x= ? \frac { \cos 10 x - \cos 4 x } { \sin 10 x + \sin 4 x } = \text { ? }  Show that the equation is not an identity by finding a value of x for which both sides are defined but not equal. - \frac { \cos 10 x - \cos 4 x } { \sin 10 x + \sin 4 x } = \text { ? }

(Multiple Choice)
4.8/5
(41)

Use Sum and Difference Formulas for Cosines and Sines - cos(30+45)\cos \left( 30 ^ { \circ } + 45 ^ { \circ } \right)

(Multiple Choice)
4.8/5
(39)

Solve the problem. -The sound produced by touching each button on a touch-tone phone is described by y=sin2πlt+sin2πhty = \sin 2 \pi l t + \sin 2 \pi h t where ll and hh are the low and high frequencies (cycles per second) in the figure shown.  Solve the problem. -The sound produced by touching each button on a touch-tone phone is described by  y = \sin 2 \pi l t + \sin 2 \pi h t  where  l  and  h  are the low and high frequencies (cycles per second) in the figure shown.    Touch-Tone phone Describe the sound emitted by touching the 0 key as a product of sines and cosines.  Touch-Tone phone Describe the sound emitted by touching the 0 key as a product of sines and cosines.

(Multiple Choice)
4.8/5
(36)

Verify the identity. - cos(3π2θ)=sinθ\cos \left( \frac { 3 \pi } { 2 } - \theta \right) = - \sin \theta

(Essay)
4.8/5
(39)

Complete the identity. - 1+cos2xsin2x= ? \frac { 1 + \cos 2 x } { \sin 2 x } = \text { ? }

(Multiple Choice)
4.9/5
(36)

Use a calculator to solve the equation on the interval [0, 2π). Round the answer to two decimal places. - cos2x+cosx=0\cos 2 x + \cos x = 0

(Multiple Choice)
4.8/5
(35)

Complete the identity. - sin2x+sin2xcot2x=\sin ^ { 2 } x + \sin ^ { 2 } x \cot ^ { 2 } x = ?

(Multiple Choice)
4.9/5
(29)

Use Sum and Difference Formulas for Cosines and Sines - sin255\sin 255 ^ { \circ }

(Multiple Choice)
5.0/5
(28)

Verify the identity. - tan2x(1+cos2x)=1cos2x\tan ^ { 2 } x ( 1 + \cos 2 x ) = 1 - \cos 2 x

(Essay)
4.8/5
(42)

Show that the equation is not an identity by finding a value of x for which both sides are defined but not equal. - cos2x+cos6x=2cos4xcosx\cos 2 x + \cos 6 x = 2 \cos 4 x \cos x

(Multiple Choice)
4.8/5
(35)

Complete the identity. - tanx(cotxcosx)=\tan x ( \cot x - \cos x ) = ?

(Multiple Choice)
4.8/5
(31)

Use Identities to Solve Trigonometric Equations Solve the equation on the interval [0, 2π). - cos(x+π4)cos(xπ4)=1\cos \left( x + \frac { \pi } { 4 } \right) - \cos \left( x - \frac { \pi } { 4 } \right) = 1

(Multiple Choice)
4.8/5
(43)

Express the product as a sum or difference. - sinx2cos9x2\sin \frac { x } { 2 } \cos \frac { 9 x } { 2 }

(Multiple Choice)
4.8/5
(33)

Use The Half-Angle Formulas - sin3π8\sin \frac { 3 \pi } { 8 }

(Multiple Choice)
4.8/5
(32)

Complete the identity. - tanθ2+cotθ2=?\tan \frac { \theta } { 2 } + \cot \frac { \theta } { 2 } = ?

(Multiple Choice)
4.7/5
(37)

Use substitution to determine whether the given x-value is a solution of the equation. Find All Solutions of a Trigonometric Equation - tanxsecx=2tanx\tan x \sec x = - 2 \tan x

(Multiple Choice)
4.9/5
(34)

Verify the identity. - tan(xπ4)=tanx11+tanx\tan \left( x - \frac { \pi } { 4 } \right) = \frac { \tan x - 1 } { 1 + \tan x }

(Essay)
4.9/5
(38)

Complete the identity. - 1sinxcosx=?\frac { 1 - \sin x } { \cos x } = ?

(Multiple Choice)
4.8/5
(45)
Showing 61 - 80 of 226
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)