Exam 6: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Complete the identity. - cos(x+π2)=\cos \left( x + \frac { \pi } { 2 } \right) = ?

(Multiple Choice)
4.9/5
(32)

Verify the identity. - sin(3π2θ)=cosθ\sin \left( \frac { 3 \pi } { 2 } - \theta \right) = - \cos \theta

(Essay)
4.7/5
(41)

Use the figure to find the exact value of the trigonometric function. - cosθ=45,θ\cos \theta = \frac { 4 } { 5 } , \theta lies in quadrant IV Find sin2θ\sin 2 \theta .

(Multiple Choice)
4.8/5
(41)

Express the sum or difference as a product. - sin9xsin3x\sin 9 x - \sin 3 x

(Multiple Choice)
4.9/5
(40)

Use a graph in a [ [2π,2π,π2] by [3,3,1]\left[ - 2 \pi , 2 \pi , \frac { \pi } { 2 } \right] \text { by } [ - 3,3,1 ] 3, 3, 1] viewing rectangle to complete the identity. - 12cos2x2sinx1=\frac { 1 - 2 \cos 2 x } { 2 \sin x - 1 } = ?

(Multiple Choice)
4.8/5
(35)

Complete the identity. - (tanx+1)(tanx+1)sec2xtanx=\frac { ( \tan x + 1 ) ( \tan x + 1 ) - \sec ^ { 2 } x } { \tan x } = ?

(Multiple Choice)
4.8/5
(26)

Use the given information to find the exact value of the trigonometric function. - secθ=2524,θ\sec \theta = - \frac { 25 } { 24 } , \theta lies in quadrant II Find sinθ2\sin \frac { \theta } { 2 } .

(Multiple Choice)
4.7/5
(37)

Use The Half-Angle Formulas - cos3π8\cos \frac { 3 \pi } { 8 }

(Multiple Choice)
4.8/5
(43)

Complete the identity. - 2cotx1+cot2x=?\frac { 2 \cot x } { 1 + \cot ^ { 2 } x } = ?

(Multiple Choice)
4.9/5
(35)

Use The Half-Angle Formulas - cos5π12\cos \frac { 5 \pi } { 12 }

(Multiple Choice)
4.8/5
(32)

Complete the identity. - cotθ2=?\cot \frac { \theta } { 2 } = ?

(Multiple Choice)
4.9/5
(46)

Write the expression as the sine, cosine, or tangent of a double angle. Then find the exact value of the expression. - cos260sin260\cos ^ { 2 } 60 ^ { \circ } - \sin ^ { 2 } 60 ^ { \circ }

(Multiple Choice)
4.8/5
(37)

Find the exact value under the given conditions. - sin(5π6α)cos(5π6+α)+cos(5π6α)sin(5π6+α)\sin \left( \frac { - 5 \pi } { 6 } - \alpha \right) \cos \left( \frac { - 5 \pi } { 6 } + \alpha \right) + \cos \left( \frac { - 5 \pi } { 6 } - \alpha \right) \sin \left( \frac { - 5 \pi } { 6 } + \alpha \right)

(Multiple Choice)
4.8/5
(36)

Use the Formula for the Cosine of the Difference of Two Angles - cos(160)cos(40)+sin(160)sin(40)\cos \left( 160 ^ { \circ } \right) \cos \left( 40 ^ { \circ } \right) + \sin \left( 160 ^ { \circ } \right) \sin \left( 40 ^ { \circ } \right)

(Multiple Choice)
4.8/5
(35)

Complete the identity. - sin2xcotx=\sin 2 x - \cot x = ?

(Multiple Choice)
4.8/5
(30)

Verify the identity. - cos(α+β)cosαsinβ=cotβtanα\frac { \cos ( \alpha + \beta ) } { \cos \alpha \sin \beta } = \cot \beta - \tan \alpha

(Essay)
4.8/5
(38)

Use a calculator to solve the equation on the interval [0, 2π). Round the answer to two decimal places. - sinx=0.37\sin x = - 0.37

(Multiple Choice)
4.8/5
(39)

Use The Half-Angle Formulas - sin5π12\sin \frac { 5 \pi } { 12 }

(Multiple Choice)
4.9/5
(28)

Show that the equation is not an identity by finding a value of x for which both sides are defined but not equal. -Graph in a [π,π,π2]\left[ - \pi , \pi , \frac { \pi } { 2 } \right] by [3,3,1][ - 3,3,1 ] viewing rectangle y=2(sinx1sin2x2+sin3x3sin4x4+sin5x5sin6x6+sin7x7)y = 2 \left( \frac { \sin x } { 1 } - \frac { \sin 2 x } { 2 } + \frac { \sin 3 x } { 3 } - \frac { \sin 4 x } { 4 } + \frac { \sin 5 x } { 5 } - \frac { \sin 6 x } { 6 } + \frac { \sin 7 x } { 7 } \right)

(Multiple Choice)
4.8/5
(35)

Express the product as a sum or difference. - sin3xsin7x\sin 3 x \sin 7 x

(Multiple Choice)
4.9/5
(26)
Showing 201 - 220 of 226
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)