Exam 7: Arithmetic Sequence: Common Difference and First n Terms

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the formula for Sn to find the sum of the first five terms of the geometric sequence. - 23,83,323,1283,\frac { 2 } { 3 } , \frac { 8 } { 3 } , \frac { 32 } { 3 } , \frac { 128 } { 3 } , \ldots

(Multiple Choice)
4.8/5
(36)

Provide an appropriate response. -What is true of both the first term and the last term in a binomial expansion?

(Short Answer)
4.8/5
(33)

Find the eccentricity e e of the ellipse. - x2+4y2=36x ^ { 2 } + 4 y ^ { 2 } = 36

(Multiple Choice)
4.7/5
(37)

Use mathematical induction to prove that the statement is true for every positive integer n. - 12+23+34++n(n+1)=n(n+1)(n+2)31 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + n ( n + 1 ) = \frac { n ( n + 1 ) ( n + 2 ) } { 3 }

(Essay)
4.7/5
(30)

Use mathematical induction to prove that the statement is true for every positive integer n. - n!>3n, for n4n ! > 3 n , \text { for } n \geq 4

(Essay)
4.7/5
(28)

Write the series using summation notation. - 312+423+534+645+756\frac { 3 } { 1 \cdot 2 } + \frac { 4 } { 2 \cdot 3 } + \frac { 5 } { 3 \cdot 4 } + \frac { 6 } { 4 \cdot 5 } + \frac { 7 } { 5 \cdot 6 }

(Multiple Choice)
4.7/5
(39)

Find the common ratio r for the given infinite geometric sequence. -75, 15, 3, 0.6, 0.12, . . .

(Multiple Choice)
4.9/5
(35)

Use mathematical induction to prove that the statement is true for every positive integer n. - 6n>6n16 ^ { n } > 6 ^ { n - 1 }

(Essay)
4.9/5
(46)

Evaluate the sum. Round to two decimal places, if necessary. - k=142k\sum _ { k = 1 } ^ { 4 } 2 ^ { k }

(Multiple Choice)
4.7/5
(30)

Provide an appropriate response. -Explain in your own words how you can tell from the equation whether the graph is a circle or an ellipse.

(Essay)
4.8/5
(29)

Graph the conic section. 25y216x2=40025 y^{2}-16 x^{2}=400  Graph the conic section.  25 y^{2}-16 x^{2}=400

(Multiple Choice)
4.9/5
(39)

What are the odds in favor of drawing a number greater than 2 from these cards? What are the odds in favor of drawing a number greater than 2 from these cards?

(Multiple Choice)
4.9/5
(31)

Find the eccentricity e e of the hyperbola. - x22y2=6x ^ { 2 } - 2 y ^ { 2 } = 6

(Multiple Choice)
4.7/5
(32)

Evaluate the expression. - (70)\left( \begin{array} { l } 7 \\0\end{array} \right)

(Multiple Choice)
4.9/5
(34)

Provide an appropriate response. -Convert the decimal 980980980980980980 \ldots to a fraction by writing it as the infinite series 9801000+98010002+98010003+\frac { 980 } { 1000 } + \frac { 980 } { 1000 ^ { 2 } } + \frac { 980 } { 1000 ^ { 3 } } + \ldots

(Multiple Choice)
4.8/5
(34)

Decide whether the given sequence is finite or infinite. - a1=8; for n2,an=2an1\mathrm { a } _ { 1 } = 8 ; \text { for } \mathrm { n } \geq 2 , \mathrm { a } _ { \mathrm { n } } = 2 \cdot \mathrm { a } _ { \mathrm { n } - 1 }

(Multiple Choice)
4.8/5
(30)

Graph the conic section. 25x29y2250x18y+391=025 x^{2}-9 y^{2}-250 x-18 y+391=0  Graph the conic section.  25 x^{2}-9 y^{2}-250 x-18 y+391=0

(Multiple Choice)
4.8/5
(32)

Evaluate the sum using the given information. - x1=1,x2=5,x3=5,x4=4, and Δx=0.9;f(x)=3x2x\mathrm { x } _ { 1 } = - 1 , \mathrm { x } _ { 2 } = 5 , \mathrm { x } _ { 3 } = - 5 , \mathrm { x } _ { 4 } = 4 , \text { and } \Delta \mathrm { x } = - 0.9 ; \mathrm { f } ( \mathrm { x } ) = 3 \mathrm { x } ^ { 2 } - \mathrm { x } i=14f(xi)Δx\sum _ { i = 1 } ^ { 4 } f \left( x _ { i } \right) \Delta x

(Multiple Choice)
4.9/5
(36)

Find the probability. -A bag contains 8 red marbles, 2 blue marbles, and 5 green marbles. What is the probability of choosing a blue marble when one marble is drawn?

(Multiple Choice)
4.7/5
(47)

Find the first six terms of the sequence. - a1=4,a2=2; for n3,an=an1an2a _ { 1 } = 4 , a _ { 2 } = 2 ; \text { for } n \geq 3 , a _ { n } = a _ { n - 1 } - a _ { n - 2 }

(Multiple Choice)
5.0/5
(34)
Showing 281 - 300 of 570
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)