Exam 7: Arithmetic Sequence: Common Difference and First n Terms

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use mathematical induction to prove that the statement is true for every positive integer n. - (112)(113)(11n+1)=1n+1\left( 1 - \frac { 1 } { 2 } \right) \left( 1 - \frac { 1 } { 3 } \right) \cdots \left( 1 - \frac { 1 } { n + 1 } \right) = \frac { 1 } { n + 1 }

(Essay)
4.8/5
(32)

Graph the function corresponding to the sequence defined. Use the graph to decide whether the sequence converges or diverges. - an=n+772na _ { n } = \frac { n + 77 } { 2 n }

(Multiple Choice)
5.0/5
(38)

Graph the hyperbola. - x29y24=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 4 } = 1  Graph the hyperbola. - \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 4 } = 1

(Multiple Choice)
4.9/5
(38)

The roof of a building is in the shape of the hyperbola y2x2=50\mathrm { y } ^ { 2 } - \mathrm { x } ^ { 2 } = 50 , where x\mathrm { x } and y\mathrm { y } are in meters. Refer to the figu: and determine the height hh of the outside walls. A=6 mA = 6 \mathrm {~m}  The roof of a building is in the shape of the hyperbola  \mathrm { y } ^ { 2 } - \mathrm { x } ^ { 2 } = 50 , where  \mathrm { x }  and  \mathrm { y }  are in meters. Refer to the figu: and determine the height  h  of the outside walls.  A = 6 \mathrm {~m}

(Multiple Choice)
4.8/5
(28)

Identify the equation as a parabola, circle, ellipse, or hyperbola. - 9x2+16y2=1449 x ^ { 2 } + 16 y ^ { 2 } = 144

(Multiple Choice)
4.9/5
(36)

Match the equation of a hyperbola with its description. - (x+2)264(y+3)225=1\frac { ( x + 2 ) ^ { 2 } } { 64 } - \frac { ( y + 3 ) ^ { 2 } } { 25 } = 1

(Multiple Choice)
4.9/5
(38)

Evaluate the sum. Round to two decimal places, if necessary. - k=14(1)k(k+2)\sum _ { \mathrm { k } = 1 } ^ { 4 } ( - 1 ) ^ { \mathrm { k } } ( \mathrm { k } + 2 )

(Multiple Choice)
4.9/5
(33)

Evaluate the sum using the given information. - =-2,=-4,=2,=0, and \Delta=0.6;()=-4 \Delta

(Multiple Choice)
4.9/5
(38)

Find the sum of the first 551 positive integers.

(Multiple Choice)
4.7/5
(29)

Find a formula for the nth term of the arithmetic sequence shown in the graph. -Find a formula for the nth term of the arithmetic sequence shown in the graph. -

(Multiple Choice)
4.9/5
(37)

Find the eccentricity e e of the hyperbola. - x216y2=1x ^ { 2 } - 16 y ^ { 2 } = 1

(Multiple Choice)
4.8/5
(32)

Evaluate the sum. - i=15(i+5)\sum _ { i = 1 } ^ { 5 } ( i + 5 )

(Multiple Choice)
4.9/5
(40)

Graph the conic section. 9(x+3)2+16(y4)2=1449(x+3)^{2}+16(y-4)^{2}=144  Graph the conic section.  9(x+3)^{2}+16(y-4)^{2}=144

(Multiple Choice)
4.8/5
(29)

The hyperbola with equation x225y264=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 64 } = 1 1 opens up and down.

(True/False)
4.8/5
(45)

Use mathematical induction to prove that the statement is true for every positive integer n. - 46+57+68++(n+3)(n+5)=n(2n2+27n+115)64 \cdot 6 + 5 \cdot 7 + 6 \cdot 8 + \ldots + ( n + 3 ) ( n + 5 ) = \frac { n \left( 2 n ^ { 2 } + 27 n + 115 \right) } { 6 }

(Essay)
4.8/5
(43)

Evaluate the sum using the given information. - x1=3,x2=1,x3=0,x4=4x _ { 1 } = 3 , x _ { 2 } = 1 , x _ { 3 } = 0 , x _ { 4 } = - 4 , and x5=1x _ { 5 } = - 1 i=15(2xi+1)\sum _ { i = 1 } ^ { 5 } \left( - 2 x _ { i } + 1 \right)

(Multiple Choice)
4.9/5
(35)

If the vertex of the graph of a quadratic function lies in quadrant IV and the graph is concave up, how many x-intercepts does the graph have?

(Multiple Choice)
4.8/5
(35)

Match the equation of the parabola with the appropriate description. - y=3x25x+4y = 3 x ^ { 2 } - 5 x + 4

(Multiple Choice)
4.8/5
(42)

Evaluate the series, if it converges. - 81633296427+- 8 - \frac { 16 } { 3 } - \frac { 32 } { 9 } - \frac { 64 } { 27 } + \ldots

(Multiple Choice)
5.0/5
(27)

A town has a population of 10,000 people and is increasing by 10% every year. What will the population be at the end of 5 years?

(Multiple Choice)
4.8/5
(41)
Showing 101 - 120 of 570
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)