Exam 8: Polar Coordinates; Vectors

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Graph the polar equation. - r=41sinθr = \frac { 4 } { 1 - \sin \theta }  Graph the polar equation. - r = \frac { 4 } { 1 - \sin \theta }     A)    B)     C)    D)    A)  Graph the polar equation. - r = \frac { 4 } { 1 - \sin \theta }     A)    B)     C)    D)    B)  Graph the polar equation. - r = \frac { 4 } { 1 - \sin \theta }     A)    B)     C)    D)    C)  Graph the polar equation. - r = \frac { 4 } { 1 - \sin \theta }     A)    B)     C)    D)    D)  Graph the polar equation. - r = \frac { 4 } { 1 - \sin \theta }     A)    B)     C)    D)

(Multiple Choice)
4.8/5
(36)

Write the expression in the standard form a + bi. - (3+i)5( \sqrt { 3 } + i ) ^ { 5 }

(Multiple Choice)
4.8/5
(31)

Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r=6cosθr=6 \cos \theta  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r=6 \cos \theta     A)     (x-3)^{2}+y^{2}=9 ;   circle, radius 3 center at   (3,0)   in rectangular coordinates  B)     x^{2}+(y+3)^{2}=9 ;   circle, radius 3  center at   (0,-3)   in rectangular coordinates  C)     (x+3)^{2}+y^{2}=9  ; circle, radius 3 ,  center at   (-3,0)   in rectangular coordinates  D)      \mathrm{x}^{2}+(\mathrm{y}-3)^{2}=9  ; circle, radius 3 ,  center at   (0,3)   in rectangular coordinates A)  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r=6 \cos \theta     A)     (x-3)^{2}+y^{2}=9 ;   circle, radius 3 center at   (3,0)   in rectangular coordinates  B)     x^{2}+(y+3)^{2}=9 ;   circle, radius 3  center at   (0,-3)   in rectangular coordinates  C)     (x+3)^{2}+y^{2}=9  ; circle, radius 3 ,  center at   (-3,0)   in rectangular coordinates  D)      \mathrm{x}^{2}+(\mathrm{y}-3)^{2}=9  ; circle, radius 3 ,  center at   (0,3)   in rectangular coordinates (x3)2+y2=9; (x-3)^{2}+y^{2}=9 ; circle, radius 3 center at (3,0) (3,0) in rectangular coordinates B)  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r=6 \cos \theta     A)     (x-3)^{2}+y^{2}=9 ;   circle, radius 3 center at   (3,0)   in rectangular coordinates  B)     x^{2}+(y+3)^{2}=9 ;   circle, radius 3  center at   (0,-3)   in rectangular coordinates  C)     (x+3)^{2}+y^{2}=9  ; circle, radius 3 ,  center at   (-3,0)   in rectangular coordinates  D)      \mathrm{x}^{2}+(\mathrm{y}-3)^{2}=9  ; circle, radius 3 ,  center at   (0,3)   in rectangular coordinates x2+(y+3)2=9; x^{2}+(y+3)^{2}=9 ; circle, radius 3 center at (0,3) (0,-3) in rectangular coordinates C)  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r=6 \cos \theta     A)     (x-3)^{2}+y^{2}=9 ;   circle, radius 3 center at   (3,0)   in rectangular coordinates  B)     x^{2}+(y+3)^{2}=9 ;   circle, radius 3  center at   (0,-3)   in rectangular coordinates  C)     (x+3)^{2}+y^{2}=9  ; circle, radius 3 ,  center at   (-3,0)   in rectangular coordinates  D)      \mathrm{x}^{2}+(\mathrm{y}-3)^{2}=9  ; circle, radius 3 ,  center at   (0,3)   in rectangular coordinates (x+3)2+y2=9 (x+3)^{2}+y^{2}=9 ; circle, radius 3 , center at (3,0) (-3,0) in rectangular coordinates D)  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r=6 \cos \theta     A)     (x-3)^{2}+y^{2}=9 ;   circle, radius 3 center at   (3,0)   in rectangular coordinates  B)     x^{2}+(y+3)^{2}=9 ;   circle, radius 3  center at   (0,-3)   in rectangular coordinates  C)     (x+3)^{2}+y^{2}=9  ; circle, radius 3 ,  center at   (-3,0)   in rectangular coordinates  D)      \mathrm{x}^{2}+(\mathrm{y}-3)^{2}=9  ; circle, radius 3 ,  center at   (0,3)   in rectangular coordinates x2+(y3)2=9 \mathrm{x}^{2}+(\mathrm{y}-3)^{2}=9 ; circle, radius 3 , center at (0,3) (0,3) in rectangular coordinates

(Multiple Choice)
4.9/5
(39)

Write the expression in the standard form a + bi. - (1i)10( 1 - i ) ^ { 10 }

(Multiple Choice)
4.7/5
(38)

Graph the polar equation. - r=442cosθr = \frac { 4 } { 4 - 2 \cos \theta }  Graph the polar equation. - r = \frac { 4 } { 4 - 2 \cos \theta }     A)    B)    C)    D)   A)  Graph the polar equation. - r = \frac { 4 } { 4 - 2 \cos \theta }     A)    B)    C)    D)   B)  Graph the polar equation. - r = \frac { 4 } { 4 - 2 \cos \theta }     A)    B)    C)    D)   C)  Graph the polar equation. - r = \frac { 4 } { 4 - 2 \cos \theta }     A)    B)    C)    D)   D)  Graph the polar equation. - r = \frac { 4 } { 4 - 2 \cos \theta }     A)    B)    C)    D)

(Multiple Choice)
4.9/5
(44)

Use the figure below. Determine whether the given statement is true or false. Use the figure below. Determine whether the given statement is true or false.   -H + I + J = B -H + I + J = B

(Multiple Choice)
4.7/5
(31)

Test the equation for symmetry with respect to the given axis, line, or pole. - r=6+2sinθ;r = 6 + 2 \sin \theta ; the line θ=π2\theta = \frac { \pi } { 2 }

(Multiple Choice)
4.8/5
(37)

Find the area of the parallelogram. - P1(1,0,2),P2(2,1,2),P3(2,1,4)\mathrm { P } _ { 1 } ( - 1,0,2 ) , \mathrm { P } _ { 2 } ( 2,1 , - 2 ) , \mathrm { P } _ { 3 } ( 2 , - 1,4 )

(Multiple Choice)
4.8/5
(35)

Find the position vector for the vector having initial point P and terminal point Q. -P = (-3, 2, -3) and Q = (2, 0, 1)

(Multiple Choice)
4.8/5
(34)

Plot the point given in polar coordinates. - (4,405)\left(-4,405^{\circ}\right)  Plot the point given in polar coordinates. - \left(-4,405^{\circ}\right)      A)    B)    C)    D)    A)  Plot the point given in polar coordinates. - \left(-4,405^{\circ}\right)      A)    B)    C)    D)    B)  Plot the point given in polar coordinates. - \left(-4,405^{\circ}\right)      A)    B)    C)    D)    C)  Plot the point given in polar coordinates. - \left(-4,405^{\circ}\right)      A)    B)    C)    D)    D)  Plot the point given in polar coordinates. - \left(-4,405^{\circ}\right)      A)    B)    C)    D)

(Multiple Choice)
4.8/5
(34)

Solve the problem. Leave your answer in polar form. - z=10 4+i4 w=5 1+i1 Find zw.

(Multiple Choice)
4.8/5
(36)

Solve the problem. Leave your answer in polar form. - z=1-i w=1-i Find zw\frac { z } { w } .

(Multiple Choice)
4.8/5
(23)

Graph the polar equation. - r=cscθ2,0<θ<πr=\csc \theta-2,0<\theta<\pi  Graph the polar equation. - r=\csc \theta-2,0<\theta<\pi     A)    B)    C)    D)    A)  Graph the polar equation. - r=\csc \theta-2,0<\theta<\pi     A)    B)    C)    D)    B)  Graph the polar equation. - r=\csc \theta-2,0<\theta<\pi     A)    B)    C)    D)    C)  Graph the polar equation. - r=\csc \theta-2,0<\theta<\pi     A)    B)    C)    D)    D)  Graph the polar equation. - r=\csc \theta-2,0<\theta<\pi     A)    B)    C)    D)

(Multiple Choice)
4.8/5
(36)

Find the unit vector having the same direction as v. - v=7i\mathbf { v } = 7 \mathbf { i }

(Multiple Choice)
4.9/5
(39)

Write the complex number in rectangular form. - 6(cos330+isin330)6 \left( \cos 330 ^ { \circ } + i \sin 330 ^ { \circ } \right)

(Multiple Choice)
4.8/5
(33)

State whether the vectors are parallel, orthogonal, or neither. -v = 2i - j, w = 4i - 2j

(Multiple Choice)
4.9/5
(40)

Solve the problem. Round your answer to the nearest tenth. -Find the work done by a force of 6 pounds acting in the direction of 43° to the horizontal in moving an object 6 feet from (0, 0) to (6, 0).

(Multiple Choice)
4.8/5
(35)

Find the angle between v and w. Round your answer to one decimal place, if necessary. -v = -4i, w = j

(Multiple Choice)
4.8/5
(36)

Plot the complex number in the complex plane. - 6i- 6 i  Plot the complex number in the complex plane. - - 6 i     A)    B)    C)   D)    A)  Plot the complex number in the complex plane. - - 6 i     A)    B)    C)   D)    B)  Plot the complex number in the complex plane. - - 6 i     A)    B)    C)   D)    C)  Plot the complex number in the complex plane. - - 6 i     A)    B)    C)   D)    D)  Plot the complex number in the complex plane. - - 6 i     A)    B)    C)   D)

(Multiple Choice)
4.9/5
(35)

Plot the point given in polar coordinates. - [2,3π4\left[-2, \frac{-3 \pi}{4}\right.  Plot the point given in polar coordinates. - \left[-2, \frac{-3 \pi}{4}\right.      A)    B)    C)    D)    A)  Plot the point given in polar coordinates. - \left[-2, \frac{-3 \pi}{4}\right.      A)    B)    C)    D)    B)  Plot the point given in polar coordinates. - \left[-2, \frac{-3 \pi}{4}\right.      A)    B)    C)    D)    C)  Plot the point given in polar coordinates. - \left[-2, \frac{-3 \pi}{4}\right.      A)    B)    C)    D)    D)  Plot the point given in polar coordinates. - \left[-2, \frac{-3 \pi}{4}\right.      A)    B)    C)    D)

(Multiple Choice)
4.8/5
(32)
Showing 201 - 220 of 270
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)