Exam 8: Polar Coordinates; Vectors

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve the problem. -A truck pushes a load of 45 tons up a hill with an inclination of 35°. Express the force vector F in terms of i and j. Round the components of F to two decimal places.

(Short Answer)
4.8/5
(34)

Find the angle between v and w. Round to one decimal place, if necessary. -v = 2i + j - 2k and w = i + 3j - 3k

(Multiple Choice)
4.9/5
(31)

Use the vectors in the figure below to graph the following vector.  Use the vectors in the figure below to graph the following vector.   - 2 u - z - w    - 2uzw2 u - z - w  Use the vectors in the figure below to graph the following vector.   - 2 u - z - w

(Multiple Choice)
4.7/5
(38)

Solve the problem. Leave your answer in polar form. - = + = + Find zw\frac { z } { w } .

(Multiple Choice)
4.8/5
(34)

Find the quantity if v = 5i - 7j and w = 3i + 2j. - v+w\| v \| + \| \mathbf { w } \|

(Multiple Choice)
4.9/5
(34)

Identify and graph the polar equation. - r2=4cos(2θ)r^{2}=4 \cos (2 \theta)  Identify and graph the polar equation. - r^{2}=4 \cos (2 \theta)      A)   rose with four petals B)   lemniscate C)   lemniscate  D)   rose with four petals A)  Identify and graph the polar equation. - r^{2}=4 \cos (2 \theta)      A)   rose with four petals B)   lemniscate C)   lemniscate  D)   rose with four petals rose with four petals B)  Identify and graph the polar equation. - r^{2}=4 \cos (2 \theta)      A)   rose with four petals B)   lemniscate C)   lemniscate  D)   rose with four petals lemniscate C)  Identify and graph the polar equation. - r^{2}=4 \cos (2 \theta)      A)   rose with four petals B)   lemniscate C)   lemniscate  D)   rose with four petals lemniscate D)  Identify and graph the polar equation. - r^{2}=4 \cos (2 \theta)      A)   rose with four petals B)   lemniscate C)   lemniscate  D)   rose with four petals rose with four petals

(Multiple Choice)
4.8/5
(33)

The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ). - x2=4yx ^ { 2 } = 4 y

(Multiple Choice)
4.8/5
(38)

The polar coordinates of a point are given. Find the rectangular coordinates of the point. - (5,4π3)\left( 5 , - \frac { 4 \pi } { 3 } \right)

(Multiple Choice)
4.7/5
(27)

The polar coordinates of a point are given. Find the rectangular coordinates of the point. - (5,360)\left( - 5 , - 360 ^ { \circ } \right)

(Multiple Choice)
4.8/5
(25)

Find the indicated cross product. -v = i + 2j + 2k, w = 6i + 5j - k Find v × w.

(Multiple Choice)
4.8/5
(34)

Graph the polar equation. - r=3θ\mathbf { r } = \frac { 3 } { \theta }  Graph the polar equation. - \mathbf { r } = \frac { 3 } { \theta }     A)    B)    C)    D)    A)  Graph the polar equation. - \mathbf { r } = \frac { 3 } { \theta }     A)    B)    C)    D)    B)  Graph the polar equation. - \mathbf { r } = \frac { 3 } { \theta }     A)    B)    C)    D)    C)  Graph the polar equation. - \mathbf { r } = \frac { 3 } { \theta }     A)    B)    C)    D)    D)  Graph the polar equation. - \mathbf { r } = \frac { 3 } { \theta }     A)    B)    C)    D)

(Multiple Choice)
4.9/5
(36)

Plot the point given in polar coordinates. - (2,45)\left( 2,45 ^ { \circ } \right)  Plot the point given in polar coordinates. - \left( 2,45 ^ { \circ } \right)     A)    B)    C)    D)     A)  Plot the point given in polar coordinates. - \left( 2,45 ^ { \circ } \right)     A)    B)    C)    D)     B)  Plot the point given in polar coordinates. - \left( 2,45 ^ { \circ } \right)     A)    B)    C)    D)     C)  Plot the point given in polar coordinates. - \left( 2,45 ^ { \circ } \right)     A)    B)    C)    D)     D)  Plot the point given in polar coordinates. - \left( 2,45 ^ { \circ } \right)     A)    B)    C)    D)

(Multiple Choice)
4.9/5
(35)

State whether the vectors are parallel, orthogonal, or neither. - v=i+5j,w=2i+j\mathbf { v } = \mathbf { i } + 5 \mathbf { j } , \quad \mathbf { w } = - 2 \mathbf { i } + \mathbf { j }

(Multiple Choice)
4.7/5
(25)

Solve the problem. -Find a unit vector normal to the plane containing u = -i + 3j - 5k and v = 2i - j + 6k.

(Essay)
4.8/5
(39)

Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - rsinθ=4r \sin \theta = 4  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r \sin \theta = 4     A)    x = - 4 ; vertical line 4 units to the left of the pole  B)    x = 4 ; vertical line 4 units to the right of the pole  C)    y = - 4 ; horizontal line 4 units below the pole  D)    y = 4 ; horizontal line 4 units above the pole A)  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r \sin \theta = 4     A)    x = - 4 ; vertical line 4 units to the left of the pole  B)    x = 4 ; vertical line 4 units to the right of the pole  C)    y = - 4 ; horizontal line 4 units below the pole  D)    y = 4 ; horizontal line 4 units above the pole x=4x = - 4 ; vertical line 4 units to the left of the pole B)  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r \sin \theta = 4     A)    x = - 4 ; vertical line 4 units to the left of the pole  B)    x = 4 ; vertical line 4 units to the right of the pole  C)    y = - 4 ; horizontal line 4 units below the pole  D)    y = 4 ; horizontal line 4 units above the pole x=4x = 4 ; vertical line 4 units to the right of the pole C)  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r \sin \theta = 4     A)    x = - 4 ; vertical line 4 units to the left of the pole  B)    x = 4 ; vertical line 4 units to the right of the pole  C)    y = - 4 ; horizontal line 4 units below the pole  D)    y = 4 ; horizontal line 4 units above the pole y=4y = - 4 ; horizontal line 4 units below the pole D)  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r \sin \theta = 4     A)    x = - 4 ; vertical line 4 units to the left of the pole  B)    x = 4 ; vertical line 4 units to the right of the pole  C)    y = - 4 ; horizontal line 4 units below the pole  D)    y = 4 ; horizontal line 4 units above the pole y=4y = 4 ; horizontal line 4 units above the pole

(Multiple Choice)
4.9/5
(34)

Write the vector v in the form ai + bj, given its magnitude v and the angle α it makes with the positive x-axis. - v=7,α=60\| v \| = 7 , \alpha = 60 ^ { \circ }

(Multiple Choice)
4.9/5
(36)

Find the distance from P1 to P2\mathrm { P } _ { 1 } \text { to } \mathrm { P } _ { 2 } - P1=(3,1,1)\mathrm { P } _ { 1 } = ( - 3,1,1 ) and P2=(1,0,3)\mathrm { P } _ { 2 } = ( 1,0 , - 3 )

(Multiple Choice)
4.7/5
(32)

The rectangular coordinates of a point are given. Find polar coordinates for the point. -(0, 9) A) (9,0)( 9,0 ) B) (9,π2)\left( 9 , - \frac { \pi } { 2 } \right) C) (9,π)( 9 , \pi ) D) (9,π2)\left( 9 , \frac { \pi } { 2 } \right)

(Multiple Choice)
4.9/5
(34)

Find the requested vector. -v = 4i + 4j + k Find a vector orthogonal to both v and i + k.

(Multiple Choice)
4.9/5
(32)

Solve the problem. -If v=5i+j\mathbf { v } = 5 \mathbf { i } + \mathbf { j } and w=9i+j\mathbf { w } = 9 \mathbf { i } + \mathbf { j } , find v+w\| \mathbf { v } + \mathbf { w } \| .

(Multiple Choice)
4.7/5
(32)
Showing 21 - 40 of 270
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)