Exam 8: Polar Coordinates; Vectors

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Plot the point given in polar coordinates. - (3,π4)\left( - 3 , - \frac { \pi } { 4 } \right)  Plot the point given in polar coordinates. - \left( - 3 , - \frac { \pi } { 4 } \right)     A)    B)    C)   D)    A)  Plot the point given in polar coordinates. - \left( - 3 , - \frac { \pi } { 4 } \right)     A)    B)    C)   D)    B)  Plot the point given in polar coordinates. - \left( - 3 , - \frac { \pi } { 4 } \right)     A)    B)    C)   D)    C)  Plot the point given in polar coordinates. - \left( - 3 , - \frac { \pi } { 4 } \right)     A)    B)    C)   D)    D)  Plot the point given in polar coordinates. - \left( - 3 , - \frac { \pi } { 4 } \right)     A)    B)    C)   D)

(Multiple Choice)
4.8/5
(36)

Write the complex number in polar form. Express the argument in degrees, rounded to the nearest tenth, if necessary. - 6- 6

(Multiple Choice)
4.8/5
(37)

The rectangular coordinates of a point are given. Find polar coordinates for the point. -(100, -30) Round the polar coordinates to two decimal places, with θ in degrees.

(Multiple Choice)
4.7/5
(38)

Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - rsecθ=6r \sec \theta = - 6  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r \sec \theta = - 6     A)    ( x + 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3  center  ( - 3,0 )  in rectangular coordinates  B)    y = - 6 ; horizontal line 6 units below the pole  C)    x = - 6 ; vertical line 6 units to the left of the pole  D)    x ^ { 2 } + ( y + 3 ) ^ { 2 } = 9 ; circle, radius 3 center at  ( 0 , - 3 )  in rectangular coordinates A)  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r \sec \theta = - 6     A)    ( x + 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3  center  ( - 3,0 )  in rectangular coordinates  B)    y = - 6 ; horizontal line 6 units below the pole  C)    x = - 6 ; vertical line 6 units to the left of the pole  D)    x ^ { 2 } + ( y + 3 ) ^ { 2 } = 9 ; circle, radius 3 center at  ( 0 , - 3 )  in rectangular coordinates (x+3)2+y2=9( x + 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 center (3,0)( - 3,0 ) in rectangular coordinates B)  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r \sec \theta = - 6     A)    ( x + 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3  center  ( - 3,0 )  in rectangular coordinates  B)    y = - 6 ; horizontal line 6 units below the pole  C)    x = - 6 ; vertical line 6 units to the left of the pole  D)    x ^ { 2 } + ( y + 3 ) ^ { 2 } = 9 ; circle, radius 3 center at  ( 0 , - 3 )  in rectangular coordinates y=6y = - 6 ; horizontal line 6 units below the pole C)  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r \sec \theta = - 6     A)    ( x + 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3  center  ( - 3,0 )  in rectangular coordinates  B)    y = - 6 ; horizontal line 6 units below the pole  C)    x = - 6 ; vertical line 6 units to the left of the pole  D)    x ^ { 2 } + ( y + 3 ) ^ { 2 } = 9 ; circle, radius 3 center at  ( 0 , - 3 )  in rectangular coordinates x=6x = - 6 ; vertical line 6 units to the left of the pole D)  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r \sec \theta = - 6     A)    ( x + 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3  center  ( - 3,0 )  in rectangular coordinates  B)    y = - 6 ; horizontal line 6 units below the pole  C)    x = - 6 ; vertical line 6 units to the left of the pole  D)    x ^ { 2 } + ( y + 3 ) ^ { 2 } = 9 ; circle, radius 3 center at  ( 0 , - 3 )  in rectangular coordinates x2+(y+3)2=9x ^ { 2 } + ( y + 3 ) ^ { 2 } = 9 ; circle, radius 3 center at (0,3)( 0 , - 3 ) in rectangular coordinates

(Multiple Choice)
5.0/5
(29)

Find the requested vector. -v = -3i - 5j + k Find a vector orthogonal to both v and i + j.

(Multiple Choice)
5.0/5
(32)

Find the quantity if v = 5i - 7j and w = 3i + 2j. - v+w\| \mathbf { v } + \mathbf { w } \|

(Multiple Choice)
4.8/5
(34)

State whether the vectors are parallel, orthogonal, or neither. - v=i+5j,w=i+j\mathrm { v } = \mathrm { i } + 5 \mathrm { j } , \quad \mathbf { w } = \mathrm { i } + \mathrm { j }

(Multiple Choice)
4.9/5
(31)

Identify and graph the polar equation. - r=4θr = 4 \theta  Identify and graph the polar equation. - r = 4 \theta    A)   logarithmic spiral B)   logarithmic spiral  C)   logarithmic spiral  D)    logarithmic spiral A)  Identify and graph the polar equation. - r = 4 \theta    A)   logarithmic spiral B)   logarithmic spiral  C)   logarithmic spiral  D)    logarithmic spiral logarithmic spiral B)  Identify and graph the polar equation. - r = 4 \theta    A)   logarithmic spiral B)   logarithmic spiral  C)   logarithmic spiral  D)    logarithmic spiral logarithmic spiral C)  Identify and graph the polar equation. - r = 4 \theta    A)   logarithmic spiral B)   logarithmic spiral  C)   logarithmic spiral  D)    logarithmic spiral logarithmic spiral D)  Identify and graph the polar equation. - r = 4 \theta    A)   logarithmic spiral B)   logarithmic spiral  C)   logarithmic spiral  D)    logarithmic spiral logarithmic spiral

(Multiple Choice)
5.0/5
(32)

Graph the polar equation. - r=sinθtanθr=\sin \theta \tan \theta  Graph the polar equation. - r=\sin \theta \tan \theta     A)    B)    C)    D)    A)  Graph the polar equation. - r=\sin \theta \tan \theta     A)    B)    C)    D)    B)  Graph the polar equation. - r=\sin \theta \tan \theta     A)    B)    C)    D)    C)  Graph the polar equation. - r=\sin \theta \tan \theta     A)    B)    C)    D)    D)  Graph the polar equation. - r=\sin \theta \tan \theta     A)    B)    C)    D)

(Multiple Choice)
4.7/5
(31)

Match the graph to one of the polar equations. - Match the graph to one of the polar equations. -  A)  r \sin \theta = 3  B)  r = 6 \cos \theta  C)  r = 6 \sin \theta  D)  r = 3 A) rsinθ=3r \sin \theta = 3 B) r=6cosθr = 6 \cos \theta C) r=6sinθr = 6 \sin \theta D) r=3r = 3

(Multiple Choice)
4.8/5
(37)

State whether the vectors are parallel, orthogonal, or neither. -v = 4i + j, w = i - 4j

(Multiple Choice)
4.8/5
(38)

Graph the polar equation. - r=31cosθr = \frac { 3 } { 1 - \cos \theta }  Graph the polar equation. - r = \frac { 3 } { 1 - \cos \theta }     A)    B)    C)    D)    A)  Graph the polar equation. - r = \frac { 3 } { 1 - \cos \theta }     A)    B)    C)    D)    B)  Graph the polar equation. - r = \frac { 3 } { 1 - \cos \theta }     A)    B)    C)    D)    C)  Graph the polar equation. - r = \frac { 3 } { 1 - \cos \theta }     A)    B)    C)    D)    D)  Graph the polar equation. - r = \frac { 3 } { 1 - \cos \theta }     A)    B)    C)    D)

(Multiple Choice)
4.9/5
(42)

Test the equation for symmetry with respect to the given axis, line, or pole. - r=44sinθ; polar axis r = 4 - 4 \sin \theta ; \text { polar axis }

(Multiple Choice)
4.9/5
(35)

Find all the complex roots. Leave your answers in polar form with the argument in degrees. -The complex fifth roots of 2i- 2 \mathrm { i }

(Multiple Choice)
4.7/5
(30)

Write the complex number in rectangular form. - 3(cosπ3+isinπ3)3 \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right)

(Multiple Choice)
4.7/5
(31)

Match the point in polar coordinates with either A, B, C, or D on the graph. - (3,5π3)\left( 3 , - \frac { 5 \pi } { 3 } \right)  Match the point in polar coordinates with either A, B, C, or D on the graph. - \left( 3 , - \frac { 5 \pi } { 3 } \right)

(Multiple Choice)
4.9/5
(40)

The letters r and θ represent polar coordinates. Write the equation using rectangular coordinates (x, y). - r=2(sinθcosθ)\mathrm { r } = 2 ( \sin \theta - \cos \theta )

(Multiple Choice)
4.8/5
(30)

Find the angle between v and w. Round your answer to one decimal place, if necessary. -v = -5i + 7j, w = -6i - 4j

(Multiple Choice)
4.8/5
(28)

Test the equation for symmetry with respect to the given axis, line, or pole. - r=36sinθ; the polar axis r = 3 - 6 \sin \theta \text {; the polar axis }

(Multiple Choice)
4.8/5
(33)

Solve the problem. -An SUV weighing 4,400 pounds is parked on a street which has an incline of 15°. Find the force required to keep the SUV from rolling down the hill and the force of the SUV perpendicular to the hill. Round the forces to the Nearest hundredth.

(Multiple Choice)
4.9/5
(37)
Showing 101 - 120 of 270
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)