Exam 8: Polar Coordinates; Vectors

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Match the graph to one of the polar equations. - Match the graph to one of the polar equations. -  A)  r = - 2 \cos \theta  B)  r \sin \theta = - 1  C)  r = - 2 \sin \theta  D)  r = - 1 A) r=2cosθr = - 2 \cos \theta B) rsinθ=1r \sin \theta = - 1 C) r=2sinθr = - 2 \sin \theta D) r=1r = - 1

(Multiple Choice)
4.7/5
(35)

Find the requested vector. -v = -4i - 5j + k, w = -5i + 3j - k Find a vector orthogonal to both v and w.

(Multiple Choice)
4.9/5
(34)

Find the indicated cross product. -v = 4i + 2j + 5k, w = -5i + 2j + 4k Find w × v.

(Multiple Choice)
4.9/5
(26)

Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - θ=π3\theta = \frac { \pi } { 3 }  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - \theta = \frac { \pi } { 3 }     A)     y=\sqrt{3} x  ; line through the pole making  an angle of   \frac{\pi}{3}   with the polar axis  B)     y=-\frac{\sqrt{3}}{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  C)     y=-\frac{\pi}{3}  ; horizontal line   \frac{\pi}{3}   units  below the pole  D)     \left(x-\frac{\pi}{3}\right)^{2}+y^{2}=\frac{\pi^{2}}{9} ;   circle, radius   \frac{\pi}{3}    center at   \left(\frac{\pi}{3}, 0\right)   in rectangular coordinates  A)  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - \theta = \frac { \pi } { 3 }     A)     y=\sqrt{3} x  ; line through the pole making  an angle of   \frac{\pi}{3}   with the polar axis  B)     y=-\frac{\sqrt{3}}{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  C)     y=-\frac{\pi}{3}  ; horizontal line   \frac{\pi}{3}   units  below the pole  D)     \left(x-\frac{\pi}{3}\right)^{2}+y^{2}=\frac{\pi^{2}}{9} ;   circle, radius   \frac{\pi}{3}    center at   \left(\frac{\pi}{3}, 0\right)   in rectangular coordinates  y=3x y=\sqrt{3} x ; line through the pole making an angle of π3 \frac{\pi}{3} with the polar axis B)  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - \theta = \frac { \pi } { 3 }     A)     y=\sqrt{3} x  ; line through the pole making  an angle of   \frac{\pi}{3}   with the polar axis  B)     y=-\frac{\sqrt{3}}{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  C)     y=-\frac{\pi}{3}  ; horizontal line   \frac{\pi}{3}   units  below the pole  D)     \left(x-\frac{\pi}{3}\right)^{2}+y^{2}=\frac{\pi^{2}}{9} ;   circle, radius   \frac{\pi}{3}    center at   \left(\frac{\pi}{3}, 0\right)   in rectangular coordinates  y=33x y=-\frac{\sqrt{3}}{3} x ; line through the pole making an angle of π3 \frac{\pi}{3} with the polar axis C)  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - \theta = \frac { \pi } { 3 }     A)     y=\sqrt{3} x  ; line through the pole making  an angle of   \frac{\pi}{3}   with the polar axis  B)     y=-\frac{\sqrt{3}}{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  C)     y=-\frac{\pi}{3}  ; horizontal line   \frac{\pi}{3}   units  below the pole  D)     \left(x-\frac{\pi}{3}\right)^{2}+y^{2}=\frac{\pi^{2}}{9} ;   circle, radius   \frac{\pi}{3}    center at   \left(\frac{\pi}{3}, 0\right)   in rectangular coordinates  y=π3 y=-\frac{\pi}{3} ; horizontal line π3 \frac{\pi}{3} units below the pole D)  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - \theta = \frac { \pi } { 3 }     A)     y=\sqrt{3} x  ; line through the pole making  an angle of   \frac{\pi}{3}   with the polar axis  B)     y=-\frac{\sqrt{3}}{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  C)     y=-\frac{\pi}{3}  ; horizontal line   \frac{\pi}{3}   units  below the pole  D)     \left(x-\frac{\pi}{3}\right)^{2}+y^{2}=\frac{\pi^{2}}{9} ;   circle, radius   \frac{\pi}{3}    center at   \left(\frac{\pi}{3}, 0\right)   in rectangular coordinates  (xπ3)2+y2=π29; \left(x-\frac{\pi}{3}\right)^{2}+y^{2}=\frac{\pi^{2}}{9} ; circle, radius π3 \frac{\pi}{3} center at (π3,0) \left(\frac{\pi}{3}, 0\right) in rectangular coordinates

(Multiple Choice)
4.9/5
(38)

Find all the complex roots. Leave your answers in polar form with the argument in degrees. -The complex fifth roots of 3+i\sqrt { 3 } + i

(Multiple Choice)
4.8/5
(34)

The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ). - y=5y = 5

(Multiple Choice)
4.7/5
(28)

Find the area of the parallelogram. - P1(1,2,0),P2(2,3,2),P3(0,2,3)\mathrm { P } _ { 1 } ( 1,2,0 ) , \mathrm { P } _ { 2 } ( - 2,3,2 ) , \mathrm { P } _ { 3 } ( 0 , - 2,3 )

(Multiple Choice)
4.8/5
(37)

Find the value of the determinant. - 6971\left| \begin{array} { r r } - 6 & 9 \\- 7 & - 1\end{array} \right|

(Multiple Choice)
4.9/5
(43)

Plot the point given in polar coordinates. - (2,360)0)\left. ( 2,360 ) ^ { 0 } \right)  Plot the point given in polar coordinates. - \left. ( 2,360 ) ^ { 0 } \right)     A)    B)    C)    D)    A)  Plot the point given in polar coordinates. - \left. ( 2,360 ) ^ { 0 } \right)     A)    B)    C)    D)    B)  Plot the point given in polar coordinates. - \left. ( 2,360 ) ^ { 0 } \right)     A)    B)    C)    D)    C)  Plot the point given in polar coordinates. - \left. ( 2,360 ) ^ { 0 } \right)     A)    B)    C)    D)    D)  Plot the point given in polar coordinates. - \left. ( 2,360 ) ^ { 0 } \right)     A)    B)    C)    D)

(Multiple Choice)
4.8/5
(32)

Solve the problem. -If v = 3i - 5j and w = -7i + 4j, find 3v - 4w.

(Multiple Choice)
4.8/5
(36)
Showing 261 - 270 of 270
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)