Exam 8: Polar Coordinates; Vectors

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

State whether the vectors are parallel, orthogonal, or neither. - v=2i2j,w=3i+j\mathbf { v } = - 2 \mathrm { i } - 2 \mathrm { j } , \quad \mathrm { w } = 3 \mathrm { i } + \mathrm { j }

(Multiple Choice)
4.9/5
(45)

Describe the set of points (x, y, z) defined by the equation. -z = 0

(Multiple Choice)
4.9/5
(38)

State whether the vectors are parallel, orthogonal, or neither. -v = 4i + 2j, w = 8i + 4j

(Multiple Choice)
4.9/5
(38)

Find the indicated cross product. -v = -6i + 2j, w = 2i - 4k Find w × v.

(Multiple Choice)
4.9/5
(34)

The polar coordinates of a point are given. Find the rectangular coordinates of the point. - (3,135)\left( - 3 , - 135 ^ { \circ } \right)

(Multiple Choice)
4.8/5
(32)

Use the given vectors to find the indicated expression. -v = -4i + 2j - 3k, u = -4i - 3j + 4k Find v × (-5u).

(Multiple Choice)
4.8/5
(32)

Write the expression in the standard form a + bi. - [2(cos3π4+isin3π4)]4\left[ \sqrt { 2 } \left( \cos \frac { 3 \pi } { 4 } + i \sin \frac { 3 \pi } { 4 } \right) \right] ^ { 4 }

(Multiple Choice)
4.9/5
(28)

Use the given vectors to find the indicated expression. -v = 2i + 2j + 2k, w = -4i - 3j + 4k, u = 5i + 2j + 5k Find u · (v × w).

(Multiple Choice)
4.9/5
(37)

Solve the problem. Leave your answer in polar form. - z=10 4+i4 w=5 1+i1 Find zw\frac { z } { w } .

(Multiple Choice)
4.8/5
(30)

Solve the problem. Leave your answer in polar form. - z=2+2i w=-i Find zWz W .

(Multiple Choice)
4.7/5
(44)

Solve the problem. -Find a vector v whose magnitude is 26 and whose component in the i direction is twice the component in the j direction. A) v=5255i+2655jv = \frac { 52 } { 5 } \sqrt { 5 } i + \frac { 26 } { 5 } \sqrt { 5 } j \quad or v=5255i2655j\quad \mathbf { v } = - \frac { 52 } { 5 } \sqrt { 5 } i - \frac { 26 } { 5 } \sqrt { 5 } \mathbf { j } B) v=111010i331010jv = \frac { 11 } { 10 } \sqrt { 10 } i - \frac { 33 } { 10 } \sqrt { 10 } j \quad or v=111010i+331010j\quad v = - \frac { 11 } { 10 } \sqrt { 10 } i + \frac { 33 } { 10 } \sqrt { 10 } \mathbf { j } C) v=331010i+111010jv = - \frac { 33 } { 10 } \sqrt { 10 } \mathrm { i } + \frac { 11 } { 10 } \sqrt { 10 } \mathrm { j } \quad or v=331010i111010j\quad \mathbf { v } = \frac { 33 } { 10 } \sqrt { 10 } \mathrm { i } - \frac { 11 } { 10 } \sqrt { 10 } \mathrm { j } D) v=111010i+331010jv = \frac { 11 } { 10 } \sqrt { 10 } \mathrm { i } + \frac { 33 } { 10 } \sqrt { 10 } \mathrm { j } \quad or v=111010i331010j\quad \mathbf { v } = - \frac { 11 } { 10 } \sqrt { 10 } \mathrm { i } - \frac { 33 } { 10 } \sqrt { 10 } \mathbf { j }

(Multiple Choice)
4.8/5
(36)

The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ). - y2=16xy ^ { 2 } = 16 x

(Multiple Choice)
4.7/5
(34)

Match the graph to one of the polar equations. - Match the graph to one of the polar equations. -  A)  r = 3 + \sin \theta  B)  r = 3 + \cos \theta  C)  r = 6 \cos \theta  D)  r = 6 \sin \theta A) r=3+sinθr = 3 + \sin \theta B) r=3+cosθr = 3 + \cos \theta C) r=6cosθr = 6 \cos \theta D) r=6sinθr = 6 \sin \theta

(Multiple Choice)
4.8/5
(34)

Solve the problem. -Which of the following vectors is orthogonal to 20i - 8j?

(Multiple Choice)
4.7/5
(35)

Write the complex number in rectangular form. - 8(cosπ6+isinπ6)8 \left( \cos \frac { \pi } { 6 } + i \sin \frac { \pi } { 6 } \right)

(Multiple Choice)
4.8/5
(37)

Use the given vectors to find the indicated expression. -v = -3i + 5j - 4k, w = 2i + 4j - 2k, u = -4i - 4j - 3k Find v · (v × w).

(Multiple Choice)
4.7/5
(38)

Write the complex number in polar form. Express the argument in degrees, rounded to the nearest tenth, if necessary. - 5i- 5 i

(Multiple Choice)
4.8/5
(39)

Solve the problem. -Two forces, F1\mathrm { F } _ { 1 } of magnitude 60 newtons (N)( \mathrm { N } ) and F2\mathrm { F } _ { 2 } of magnitude 70 newtons, act on an object at angles of 4040 ^ { \circ } and 130130 ^ { \circ } (respectively) with the positive xx -axis. Find the direction and magnitude of the resultant force; that is, find F1+F2\mathbf { F } _ { \mathbf { 1 } } + \mathbf { F } _ { \mathbf { 2 } } . Round the direction and magnitude to two decimal places.

(Short Answer)
5.0/5
(40)

State whether the vectors are parallel, orthogonal, or neither. - v=3i5j,w=2ij\mathbf { v } = - 3 \mathbf { i } - 5 \mathbf { j } , \quad \mathbf { w } = 2 \mathbf { i } - \mathbf { j }

(Multiple Choice)
4.8/5
(33)

Solve the problem. -Find a unit vector normal to the plane containing u = -i + j + 4k and v = 2i - 3j + k.

(Essay)
4.9/5
(34)
Showing 81 - 100 of 270
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)