Exam 6: The Circular Functions and Their Graphs

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use a table or a calculator to evaluate the function. Round to four decimal places. - csc0.2756\csc 0.2756

(Multiple Choice)
5.0/5
(38)

Solve the problem. -Find the radius (to the nearest hundredth of a millimeter) of a pulley if rotating the pulley 55.2155.21 ^ { \circ } raises the pulley 17.5 mm17.5 \mathrm {~mm} .

(Multiple Choice)
4.8/5
(27)

Solve the problem. -Let angle POQ be designated θ\theta . Angles PQR\mathrm { PQR } and VRQ are right angles. If θ=38\theta = 38 ^ { \circ } , find the length of PQ accurate to four decimal places.  Solve the problem. -Let angle POQ be designated  \theta . Angles  \mathrm { PQR }  and VRQ are right angles. If  \theta = 38 ^ { \circ } , find the length of PQ accurate to four decimal places.

(Multiple Choice)
4.8/5
(37)

Solve the problem. -Suppose that the average monthly low temperatures for a small town are shown in the table. \begin{tabular} { l | l l l l l l l l l l l l } Month & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline Temperature (F)\left( { } ^ { \circ } \mathrm { F } \right) & 19 & 27 & 38 & 45 & 57 & 62 & 65 & 58 & 51 & 41 & 33 & 25 \end{tabular} Model this data using f(x)=asin(b(xc))+df ( x ) = a \sin ( b ( x - c ) ) + d .

(Multiple Choice)
4.9/5
(38)

Graph the function. - y=13tan(45x+π5)y=\frac{1}{3} \tan \left(\frac{4}{5} x+\frac{\pi}{5}\right)  Graph the function. - y=\frac{1}{3} \tan \left(\frac{4}{5} x+\frac{\pi}{5}\right)

(Multiple Choice)
4.8/5
(31)

Find the length of an arc intercepted by a central angle θin a circle of radius r. Round your answer to 1 decimal place. - r=10.63 cm\mathrm { r } = 10.63 \mathrm {~cm} .; θ=109π\theta = \frac { 10 } { 9 } \pi radians

(Multiple Choice)
4.8/5
(34)

Find the exact value of s in the given interval that has the given circular function value. - [π2,π];sins=22\left[ \frac { \pi } { 2 } , \pi \right] ; \sin \mathrm { s } = \frac { \sqrt { 2 } } { 2 }

(Multiple Choice)
4.9/5
(36)

Assume that the cities lie on the same north-south line and that the radius of the earth is 6400 km. -Find the latitude of Spokane, WA if Spokane and Jordan Valley, OR, 43.15N43.15 ^ { \circ } \mathrm { N } , are 486 km486 \mathrm {~km} apart.

(Multiple Choice)
4.9/5
(33)

The figure shows an angle θ in standard position with its terminal side intersecting the unit circle. Evaluate the indicated circular function value of θ. -Find secθ\sec \theta .  The figure shows an angle θ in standard position with its terminal side intersecting the unit circle. Evaluate the indicated circular function value of θ. -Find  \sec \theta .

(Multiple Choice)
4.8/5
(42)

Convert the degree measure to radians, correct to four decimal places. Use 3.1416 for π. - 4343 ^ { \circ }

(Multiple Choice)
4.8/5
(31)

Solve the problem. -Find the radius of a circle in which a central angle of π3\frac { \pi } { 3 } radian determines a sector of area 56 square meters. Round to the nearest hundredth.

(Multiple Choice)
4.8/5
(36)

Use a table or a calculator to evaluate the function. Round to four decimal places. - cot0.1369\cot 0.1369

(Multiple Choice)
5.0/5
(33)

Graph the function over a one-period interval. - y=4+2sin(xπ)y=4+2 \sin (x-\pi)  Graph the function over a one-period interval. - y=4+2 \sin (x-\pi)

(Multiple Choice)
4.9/5
(35)

Find the area of a sector of a circle having radius r and central angle θ. If necessary, express the answer to the nearest tenth. - r=24.0ft,θ=2π3\mathrm { r } = 24.0 \mathrm { ft } , \theta = \frac { 2 \pi } { 3 } radians

(Multiple Choice)
4.9/5
(37)

Convert the radian measure to degrees. Round to the nearest hundredth if necessary. - 13π- 13 \pi

(Multiple Choice)
4.9/5
(34)

Solve the problem. -A rotating beacon is located 3 ft from a wall. The distance from the beacon to the point on the wall where the beacon is aimed is given by a=3sec2πta = 3 | \sec 2 \pi t | \text {, } where tt is time measured in seconds since the beacon started rotating. Find aa for t=0.42t = 0.42 seconds. Round your answer to the nearest hundredth.

(Multiple Choice)
4.7/5
(36)

Use the formula s=rωts = r \omega t to find the value of the missing variable. Give an exact answer. - s=π3 m,r=5 m,t=16sec\mathrm { s } = \frac { \pi } { 3 } \mathrm {~m} , \mathrm { r } = 5 \mathrm {~m} , \mathrm { t } = 16 \mathrm { sec }

(Multiple Choice)
4.9/5
(36)

Graph the function. - y=35cot(12xπ2)y=-\frac{3}{5} \cot \left(\frac{1}{2} x-\frac{\pi}{2}\right)  Graph the function. - y=-\frac{3}{5} \cot \left(\frac{1}{2} x-\frac{\pi}{2}\right)

(Multiple Choice)
4.7/5
(34)

Find the specified quantity. -Find the amplitude of y=5cos(4x+π3)y = 5 \cos \left( 4 x + \frac { \pi } { 3 } \right) .

(Multiple Choice)
4.8/5
(33)

Find the phase shift of the function. - y=4sin(2xπ2)y = 4 \sin \left( 2 x - \frac { \pi } { 2 } \right)

(Multiple Choice)
4.9/5
(37)
Showing 261 - 280 of 289
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)