Exam 6: The Circular Functions and Their Graphs

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

The function graphed is of the form y = a sin bx or y = a cos bx, where b > 0. Determine the equation of the graph. -The function graphed is of the form y = a sin bx or y = a cos bx, where b > 0. Determine the equation of the graph. -

(Multiple Choice)
4.9/5
(46)

Use a table or a calculator to evaluate the function. Round to four decimal places. -sec 0.24510.2451

(Multiple Choice)
4.8/5
(39)

Graph the function. - y=sin23xy=\sin \frac{2}{3} x  Graph the function. - y=\sin \frac{2}{3} x

(Multiple Choice)
4.9/5
(34)

Find the specified quantity. -Find the period of y=3cos(12x+π3)y = - 3 \cos \left( \frac { 1 } { 2 } x + \frac { \pi } { 3 } \right) .

(Multiple Choice)
4.9/5
(31)

Determine the equation of the graph. -Determine the equation of the graph. -

(Multiple Choice)
4.8/5
(39)

Use a table or a calculator to evaluate the function. Round to four decimal places. - tan0.2220\tan 0.2220

(Multiple Choice)
4.8/5
(27)

Graph the function over a one-period interval. - y=2+13sin(2xπ)y=2+\frac{1}{3} \sin (2 x-\pi)  Graph the function over a one-period interval. - y=2+\frac{1}{3} \sin (2 x-\pi)

(Multiple Choice)
4.8/5
(41)

Match the function with its graph. -1) y=cscxy = - \csc x 2) y=secxy = - \sec x 3) y=tanxy = - \tan x 4) y=cotxy = - \cot x A.  Match the function with its graph. -1)  y = - \csc x  2)  y = - \sec x  3)  y = - \tan x  4)  y = - \cot x   A.   B.   C.   D.    B.  Match the function with its graph. -1)  y = - \csc x  2)  y = - \sec x  3)  y = - \tan x  4)  y = - \cot x   A.   B.   C.   D.    C.  Match the function with its graph. -1)  y = - \csc x  2)  y = - \sec x  3)  y = - \tan x  4)  y = - \cot x   A.   B.   C.   D.    D.  Match the function with its graph. -1)  y = - \csc x  2)  y = - \sec x  3)  y = - \tan x  4)  y = - \cot x   A.   B.   C.   D.

(Multiple Choice)
4.8/5
(31)

The function graphed is of the form y = a sin bx or y = a cos bx, where b > 0. Determine the equation of the graph. -The function graphed is of the form y = a sin bx or y = a cos bx, where b > 0. Determine the equation of the graph. -

(Multiple Choice)
4.9/5
(33)

The function graphed is of the form y = cos x + c, y = sin x + c, y = cos(x - d), or y = sin(x - d), where d is the least possible positive value. Determine the equation of the graph. -The function graphed is of the form y = cos x + c, y = sin x + c, y = cos(x - d), or y = sin(x - d), where d is the least possible positive value. Determine the equation of the graph. -

(Multiple Choice)
4.8/5
(39)

Use the formula ω=θt\omega = \frac { \theta } { t } to find the value of the missing variable. Give an exact answer unless otherwise indicated. - ω=π2\omega = \frac { \pi } { 2 } radian per min,t=5 min\mathrm { min } , \mathrm { t } = 5 \mathrm {~min}

(Multiple Choice)
5.0/5
(33)

Solve the problem. -A weight attached to a spring is pulled down 5 inches below the equilibrium position. Assuming that the period of the system is 14\frac { 1 } { 4 } second, determine a trigonometric model that gives the position of the weight at time t\mathrm { t } seconds.

(Multiple Choice)
4.8/5
(32)

Use the formula s=rωts = r \omega t to find the value of the missing variable. Give an exact answer. - r=16 cm,ω=π3\mathrm { r } = 16 \mathrm {~cm} , \omega = \frac { \pi } { 3 } radian per sec,t=16sec\mathrm { sec } , \mathrm { t } = 16 \mathrm { sec }

(Multiple Choice)
4.8/5
(27)

Find the specified quantity. -Find the period of y=5sin(12xπ2)y = 5 \sin \left( \frac { 1 } { 2 } x - \frac { \pi } { 2 } \right) .

(Multiple Choice)
4.9/5
(40)

Graph the function. - y=2tan(x+π4)y=2-\tan \left(x+\frac{\pi}{4}\right)  Graph the function. - y=2-\tan \left(x+\frac{\pi}{4}\right)

(Multiple Choice)
4.9/5
(34)

Solve the problem. -The position of a weight attached to a spring is s(t)=3cos7πts ( t ) = - 3 \cos 7 \pi t inches after tt seconds. When does the weight first reach its maximum height?

(Multiple Choice)
4.8/5
(33)

Find the value of s in the interval [0, π/2] that makes the statement true. Round to four decimal places. - cots=8.3122\cot \mathrm { s } = 8.3122

(Multiple Choice)
4.8/5
(34)

Solve the problem. -The path of a projectile fired at an inclination θ\theta to the horizontal with an initial speed vOv _ { O } is a parabola. The range R\mathrm { R } of the projectile, the horizontal distance that the projectile travels, is found by the formula R=vO2sin2θg\mathrm { R } = \frac { \mathrm { v } _ { \mathrm { O } } ^ { 2 } \sin 2 \theta } { \mathrm { g } } where g=32.2\mathrm { g } = 32.2 feet per second per second or g=9.8\mathrm { g } = 9.8 meters per second per second. Find the range of a projectile fired with an initial velocity of 144 feet per second at an angle of 3535 ^ { \circ } to the horizontal. Round your answer to two decimal places.

(Multiple Choice)
4.7/5
(28)

Solve the problem. -Two wheels are rotating in such a way that the rotation of the smaller wheel causes the larger wheel to rotate. The radius of the smaller wheel is 4.74.7 centimeters and the radius of the larger wheel is 16.116.1 centimeters. Through how many degrees (to the nearest hundredth of a degree) will the larger wheel rotate if the smaller one rotates 220220 ^ { \circ } ?

(Multiple Choice)
4.9/5
(27)

Graph the function over a one-period interval. - y=12+cos(2x2π3)y=\frac{1}{2}+\cos \left(2 x-\frac{2 \pi}{3}\right)  Graph the function over a one-period interval. - y=\frac{1}{2}+\cos \left(2 x-\frac{2 \pi}{3}\right)

(Multiple Choice)
4.9/5
(35)
Showing 141 - 160 of 289
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)