Exam 6: The Circular Functions and Their Graphs

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Convert the degree measure to radians, correct to four decimal places. Use 3.1416 for π. - 4848 ^ { \circ }

(Multiple Choice)
4.8/5
(31)

The figure shows an angle θ in standard position with its terminal side intersecting the unit circle. Evaluate the indicated circular function value of θ. -Find cotθ\cot \theta .  The figure shows an angle θ in standard position with its terminal side intersecting the unit circle. Evaluate the indicated circular function value of θ. -Find  \cot \theta .

(Multiple Choice)
4.9/5
(29)

The function graphed is of the form y = a tan bx or y = a cot bx, where b > 0. Determine the equation of the graph. -The function graphed is of the form y = a tan bx or y = a cot bx, where b > 0. Determine the equation of the graph. -

(Multiple Choice)
4.8/5
(32)

Solve the problem. -A center-pivot irrigation system waters a sector-shaped field. Find the area of the field if the central angle, θ=32\theta = 32 ^ { \circ } and the radius, r=151r = 151 meters. Round to the nearest whole number.

(Multiple Choice)
4.7/5
(39)

Solve the problem. -Let angle POQP O Q be designated θ\theta . Angles PQRP Q R and VRQ are right angles. If θ=11\theta = 11 ^ { \circ } , find the length of OV\mathrm { OV } accurate to four decimal places.  Solve the problem. -Let angle  P O Q  be designated  \theta . Angles  P Q R  and VRQ are right angles. If  \theta = 11 ^ { \circ } , find the length of  \mathrm { OV }  accurate to four decimal places.

(Multiple Choice)
4.8/5
(38)

Solve the problem. -Let angle POQ\mathrm { POQ } be designated θ\theta . Angles PQR\mathrm { PQR } and VRQ are right angles. If θ=45\theta = 45 ^ { \circ } , find the exact length of VR.  Solve the problem. -Let angle  \mathrm { POQ }  be designated  \theta . Angles  \mathrm { PQR }  and VRQ are right angles. If  \theta = 45 ^ { \circ } , find the exact length of VR.

(Multiple Choice)
4.9/5
(45)

Solve the problem. -Determine the period and frequency of oscillation when a pendulum of length 11 feet is released after being displaced 2 radians. Round constants to 8 decimal places, if necessary.

(Multiple Choice)
4.7/5
(29)

Match the function with its graph. -1) y=tan(xπ2)y = - \tan \left( x - \frac { \pi } { 2 } \right) 2) y=tan(x+π2}y = \tan \left( x + \frac { \pi } { 2 } \right\} 3) y=cot(xπ2}y = - \cot \left( x - \frac { \pi } { 2 } \right\} 4) y=cot(x+π2}y = \cot \left( x + \frac { \pi } { 2 } \right\} A.  Match the function with its graph. -1)  y = - \tan \left( x - \frac { \pi } { 2 } \right)  2)  y = \tan \left( x + \frac { \pi } { 2 } \right\}  3)  y = - \cot \left( x - \frac { \pi } { 2 } \right\}  4)  y = \cot \left( x + \frac { \pi } { 2 } \right\}  A.   B.   C.   D.    B.  Match the function with its graph. -1)  y = - \tan \left( x - \frac { \pi } { 2 } \right)  2)  y = \tan \left( x + \frac { \pi } { 2 } \right\}  3)  y = - \cot \left( x - \frac { \pi } { 2 } \right\}  4)  y = \cot \left( x + \frac { \pi } { 2 } \right\}  A.   B.   C.   D.    C.  Match the function with its graph. -1)  y = - \tan \left( x - \frac { \pi } { 2 } \right)  2)  y = \tan \left( x + \frac { \pi } { 2 } \right\}  3)  y = - \cot \left( x - \frac { \pi } { 2 } \right\}  4)  y = \cot \left( x + \frac { \pi } { 2 } \right\}  A.   B.   C.   D.    D.  Match the function with its graph. -1)  y = - \tan \left( x - \frac { \pi } { 2 } \right)  2)  y = \tan \left( x + \frac { \pi } { 2 } \right\}  3)  y = - \cot \left( x - \frac { \pi } { 2 } \right\}  4)  y = \cot \left( x + \frac { \pi } { 2 } \right\}  A.   B.   C.   D.

(Multiple Choice)
4.8/5
(40)

Give the amplitude or period as requested. -Period of y=5cosxy = - 5 \cos x

(Multiple Choice)
4.8/5
(35)

Solve the problem. -A pendulum of length 14.614.6 inches swings 5275 ^ { \circ } 27 ^ { \prime } to each side of its vertical position. What is the length (to the nearest hundredth of an inch) of the arc through which the end of the pendulum swings?

(Multiple Choice)
4.8/5
(27)

Graph the function. - y=12cotxy = \frac { 1 } { 2 } \cot x  Graph the function. - y = \frac { 1 } { 2 } \cot x

(Multiple Choice)
4.9/5
(27)

Graph the function. - y=34sin(xπ4)y=\frac{3}{4} \sin \left(x-\frac{\pi}{4}\right)  Graph the function. - y=\frac{3}{4} \sin \left(x-\frac{\pi}{4}\right)

(Multiple Choice)
4.8/5
(25)

Find the exact circular function value. - sin4π3\sin \frac { 4 \pi } { 3 }

(Multiple Choice)
4.8/5
(33)

Solve the problem. -Suppose the tip of the minute hand of a clock is 4 inches from the center of the clock. Determine the distance traveled by the tip of the minute hand in 30 minutes. Give an exact answer.

(Multiple Choice)
4.8/5
(38)

Use the formula v = rω to find the value of the missing variable. Give an exact answer unless otherwise indicated. - v=16ft\mathrm { v } = 16 \mathrm { ft } per sec, r=9.3ft\mathrm { r } = 9.3 \mathrm { ft } (Round to four decimal places when necessary.)

(Multiple Choice)
4.8/5
(40)

Convert the degree measure to radians, correct to four decimal places. Use 3.1416 for π. - 32.209432.2094 ^ { \circ }

(Multiple Choice)
4.8/5
(38)

Use a table or a calculator to evaluate the function. Round to four decimal places. - cos0.2921\cos 0.2921

(Multiple Choice)
4.8/5
(42)

Find the value of s in the interval [0, π/2] that makes the statement true. Round to four decimal places. - cscs=1.7345\csc \mathrm { s } = 1.7345

(Multiple Choice)
4.9/5
(37)

Find the corresponding angle measure in radians. - 240- 240 ^ { \circ }  Find the corresponding angle measure in radians. - - 240 ^ { \circ }

(Multiple Choice)
4.8/5
(34)

Convert the radian measure to degrees. Round to the nearest hundredth if necessary. - π2\frac { \pi } { 2 }

(Multiple Choice)
4.9/5
(38)
Showing 121 - 140 of 289
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)