Exam 6: The Circular Functions and Their Graphs

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Write the word or phrase that best completes each statement or answers the question. -Find the value of the arc length when θ\theta (the central Angle) is given in degrees instead of radians.

(Short Answer)
4.8/5
(34)

Solve the problem. -A car wheel has a 13 -inch radius. Through what angle (to the nearest tenth of a degree) does the wheel turn when the car rolls forward 4ft4 \mathrm { ft } ?

(Multiple Choice)
4.8/5
(28)

Convert the degree measure to radians, correct to four decimal places. Use 3.1416 for π. - 58958 ^ { \circ } 9 ^ { \prime }

(Multiple Choice)
4.7/5
(33)

Find the exact values of s in the given interval that satisfy the given condition. - [2π,π);cos2 s=34[ - 2 \pi , \pi ) ; \cos ^ { 2 } \mathrm {~s} = \frac { 3 } { 4 }

(Multiple Choice)
4.9/5
(38)

Solve the problem. -A guitar string is plucked so that it vibrates with a frequency of F=60F = 60 . Suppose the maximum displacement at the center of the string is s(0)=0.53s ( 0 ) = 0.53 . Find an equation of the form s(t)=acosbts ( t ) = a \cos b t to model this displacement. Round constants to 2 decimal places.

(Multiple Choice)
4.8/5
(33)

Solve the problem. -Each tire of an automobile has a radius of 2 feet. How many revolutions per minute (rpm) does a tire make when the automobile is traveling at a speed of 105 feet per sec? Round your answer to the nearest tenth.

(Multiple Choice)
4.8/5
(41)

Find the exact value of s in the given interval that has the given circular function value. - [π,3π2];sins=32\left[ \pi , \frac { 3 \pi } { 2 } \right] ; \sin \mathrm { s } = - \frac { \sqrt { 3 } } { 2 }

(Multiple Choice)
4.8/5
(25)

Graph the function. - y=23csc(23xπ2)y=-\frac{2}{3} \csc \left(\frac{2}{3} x-\frac{\pi}{2}\right)  Graph the function. - y=-\frac{2}{3} \csc \left(\frac{2}{3} x-\frac{\pi}{2}\right)

(Multiple Choice)
4.9/5
(33)

Find the phase shift of the function. - y=5cos(6x+π)y = - 5 \cos ( 6 x + \pi )

(Multiple Choice)
4.9/5
(37)

Match the function with its graph. -1) y=sin3xy = \sin 3 x 2) y=3cosxy = 3 \cos x 3) y=3sinxy = 3 \sin x 4) y=cos3xy = \cos 3 x A.  Match the function with its graph. -1)  y = \sin 3 x  2)  y = 3 \cos x  3)  y = 3 \sin x  4)  y = \cos 3 x  A.   B.   C.   D.    B.  Match the function with its graph. -1)  y = \sin 3 x  2)  y = 3 \cos x  3)  y = 3 \sin x  4)  y = \cos 3 x  A.   B.   C.   D.    C.  Match the function with its graph. -1)  y = \sin 3 x  2)  y = 3 \cos x  3)  y = 3 \sin x  4)  y = \cos 3 x  A.   B.   C.   D.    D.  Match the function with its graph. -1)  y = \sin 3 x  2)  y = 3 \cos x  3)  y = 3 \sin x  4)  y = \cos 3 x  A.   B.   C.   D.

(Multiple Choice)
4.8/5
(24)

Convert the degree measure to radians. Leave answer as a multiple of π. - 450- 450 ^ { \circ }

(Multiple Choice)
4.7/5
(36)

Find the phase shift of the function. - y=3sin(xπ4)y = 3 \sin \left( x - \frac { \pi } { 4 } \right)

(Multiple Choice)
4.8/5
(31)

Convert the radian measure to degrees. Round to the nearest hundredth if necessary. - 4718π- \frac { 47 } { 18 } \pi

(Multiple Choice)
4.9/5
(35)

The function graphed is of the form y = a sin bx or y = a cos bx, where b > 0. Determine the equation of the graph. -The function graphed is of the form y = a sin bx or y = a cos bx, where b > 0. Determine the equation of the graph. -

(Multiple Choice)
4.7/5
(27)

Solve the problem. -Let angle POQP O Q be designated θ\theta . Angles PQRP Q R and VRQ are right angles. If θ=51\theta = 51 ^ { \circ } , find the length of OU accurate to four decimal places.  Solve the problem. -Let angle  P O Q  be designated  \theta . Angles  P Q R  and VRQ are right angles. If  \theta = 51 ^ { \circ } , find the length of OU accurate to four decimal places.

(Multiple Choice)
4.8/5
(24)

Convert the degree measure to radians. Leave answer as a multiple of π. - 288288 ^ { \circ }

(Multiple Choice)
4.8/5
(36)

Approximate the length using the formula for arc length. Round to the nearest meter. -A television tower 450 m450 \mathrm {~m} high subtends an angle of 2102 ^ { \circ } 10 ^ { \prime } . How far away is the tower?

(Multiple Choice)
4.7/5
(28)

Graph the function. - y=3cos(x+π3)y=3 \cos \left(x+\frac{\pi}{3}\right)  Graph the function. - y=3 \cos \left(x+\frac{\pi}{3}\right)

(Multiple Choice)
4.8/5
(39)

Find the exact value of s in the given interval that has the given circular function value. - [π,3π2];tans=1\left[ \pi , \frac { 3 \pi } { 2 } \right] ; \tan \mathrm { s } = 1

(Multiple Choice)
4.8/5
(38)

Solve the problem. -A circular sector has an area of 128ft2128 \mathrm { ft } ^ { 2 } . The radius of the circle is 8 feet. What is the arc length of the sector?

(Multiple Choice)
4.9/5
(39)
Showing 81 - 100 of 289
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)