Exam 6: The Circular Functions and Their Graphs

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Assume that the cities lie on the same north-south line and that the radius of the earth is 6400 km. -Find the latitude of Winnipeg, Canada if Winnipeg and Austin, TX, 30N30 ^ { \circ } \mathrm { N } , are 2234 km2234 \mathrm {~km} apart.

(Multiple Choice)
4.9/5
(34)

Convert the radian measure to degrees. Give answer using decimal degrees to the nearest hundredth. Use 3.1416 for π. - 6.8- 6.8

(Multiple Choice)
4.8/5
(40)

Find the exact circular function value. - tan3π4\tan \frac { - 3 \pi } { 4 }

(Multiple Choice)
4.7/5
(36)

Match the function with its graph. -1) y=sin(xπ2)y = \sin \left( x - \frac { \pi } { 2 } \right) 2) y=cos(x+π2)y = \cos \left( x + \frac { \pi } { 2 } \right) 3) y=sin(x+π2)y = \sin \left( x + \frac { \pi } { 2 } \right) 4) y=cos(xπ2)y = \cos \left( x - \frac { \pi } { 2 } \right) A.  Match the function with its graph. -1)  y = \sin \left( x - \frac { \pi } { 2 } \right)  2)  y = \cos \left( x + \frac { \pi } { 2 } \right)  3)  y = \sin \left( x + \frac { \pi } { 2 } \right)  4)  y = \cos \left( x - \frac { \pi } { 2 } \right)   A.   B.   C.   D.     B.  Match the function with its graph. -1)  y = \sin \left( x - \frac { \pi } { 2 } \right)  2)  y = \cos \left( x + \frac { \pi } { 2 } \right)  3)  y = \sin \left( x + \frac { \pi } { 2 } \right)  4)  y = \cos \left( x - \frac { \pi } { 2 } \right)   A.   B.   C.   D.     C.  Match the function with its graph. -1)  y = \sin \left( x - \frac { \pi } { 2 } \right)  2)  y = \cos \left( x + \frac { \pi } { 2 } \right)  3)  y = \sin \left( x + \frac { \pi } { 2 } \right)  4)  y = \cos \left( x - \frac { \pi } { 2 } \right)   A.   B.   C.   D.     D.  Match the function with its graph. -1)  y = \sin \left( x - \frac { \pi } { 2 } \right)  2)  y = \cos \left( x + \frac { \pi } { 2 } \right)  3)  y = \sin \left( x + \frac { \pi } { 2 } \right)  4)  y = \cos \left( x - \frac { \pi } { 2 } \right)   A.   B.   C.   D.

(Multiple Choice)
4.9/5
(43)

Find the exact values of s in the given interval that satisfy the given condition. - [π,π);2cos2 s=1[ - \pi , \pi ) ; 2 \cos ^ { 2 } \mathrm {~s} = 1

(Multiple Choice)
4.9/5
(34)

Find the phase shift of the function. - y=4+2sin(3x+π4)y = - 4 + 2 \sin \left( 3 x + \frac { \pi } { 4 } \right)

(Multiple Choice)
4.7/5
(28)

Solve the problem. -Two pulleys of diameters 6 m6 \mathrm {~m} and 3 m3 \mathrm {~m} are connected by a belt. The larger pulley rotates 44 times per min. Find the angular speed of the smaller pulley.

(Multiple Choice)
4.9/5
(37)

Find the phase shift of the function. - y=3cos(x+π2)y = 3 \cos \left( x + \frac { \pi } { 2 } \right)

(Multiple Choice)
4.9/5
(39)

The function graphed is of the form y = cos x + c, y = sin x + c, y = cos(x - d), or y = sin(x - d), where d is the least possible positive value. Determine the equation of the graph. -The function graphed is of the form y = cos x + c, y = sin x + c, y = cos(x - d), or y = sin(x - d), where d is the least possible positive value. Determine the equation of the graph. -

(Multiple Choice)
4.7/5
(33)

Solve the problem. -Write the equation that describes the simple harmonic motion of a particle moving uniformly around a circle of radius 7 units, with angular speed 2 radians per second.

(Multiple Choice)
4.8/5
(30)

Graph the function over a one-period interval. - y=-4(x-\pi)  Graph the function over a one-period interval. - \begin{array}{l} y = - \frac { 1 } { 3 } \cos 4 ( x - \pi )\\ \end{array}

(Multiple Choice)
4.7/5
(31)

The function graphed is of the form y = a tan bx or y = a cot bx, where b > 0. Determine the equation of the graph. -The function graphed is of the form y = a tan bx or y = a cot bx, where b > 0. Determine the equation of the graph. -

(Multiple Choice)
4.8/5
(34)

Graph the function. - y=sin(x+π4)y = \sin \left( x + \frac { \pi } { 4 } \right)  Graph the function. - y = \sin \left( x + \frac { \pi } { 4 } \right)

(Multiple Choice)
4.9/5
(32)

Match the function with its graph. -1) y=sinxy = \sin x 2) y=cosxy = \cos x 3) y=sinxy = - \sin x 4) y=cosxy = - \cos x A.  Match the function with its graph. -1)  y = \sin x  2)  y = \cos x  3)  y = - \sin x  4)  y = - \cos x   A.   B.   C.   D.    B.  Match the function with its graph. -1)  y = \sin x  2)  y = \cos x  3)  y = - \sin x  4)  y = - \cos x   A.   B.   C.   D.    C.  Match the function with its graph. -1)  y = \sin x  2)  y = \cos x  3)  y = - \sin x  4)  y = - \cos x   A.   B.   C.   D.    D.  Match the function with its graph. -1)  y = \sin x  2)  y = \cos x  3)  y = - \sin x  4)  y = - \cos x   A.   B.   C.   D.

(Multiple Choice)
4.8/5
(32)

Solve the problem. -A pendulum of length L\mathrm { L } , when displaced horizontally and released, oscillates with harmonic motion according to the equation y=Asin((g/L)t+π/2)\mathrm { y } = \mathrm { A } \sin ( ( \sqrt { \mathrm { g } / \mathrm { L } } ) \mathrm { t } + \pi / 2 ) , where y\mathrm { y } is the distance in meters from the rest position tt seconds after release, and g=9.8 m/sec2g = 9.8 \mathrm {~m} / \mathrm { sec } ^ { 2 } . Identify the period, amplitude, and phase shift when A=0.28 m\mathrm { A } = 0.28 \mathrm {~m} and L=1.96 m\mathrm { L } = 1.96 \mathrm {~m} . Round all answers to the nearest hundredth.

(Multiple Choice)
4.7/5
(35)

Solve the problem. -A pulley rotates through 6363 ^ { \circ } in one minute. How many rotations (to the nearest tenth of a rotation) does the pulley make in an hour?

(Multiple Choice)
4.8/5
(31)

Find the area of a sector of a circle having radius r and central angle θ. If necessary, express the answer to the nearest tenth. - r=18.1 cm,θ=π7\mathrm { r } = 18.1 \mathrm {~cm} , \theta = \frac { \pi } { 7 } radians

(Multiple Choice)
4.8/5
(41)

Find the area of a sector of a circle having radius r and central angle θ. If necessary, express the answer to the nearest tenth. - r=6.0 m,θ=20\mathrm { r } = 6.0 \mathrm {~m} , \theta = 20 ^ { \circ }

(Multiple Choice)
4.8/5
(29)

The function graphed is of the form y = a sin bx or y = a cos bx, where b > 0. Determine the equation of the graph. -The function graphed is of the form y = a sin bx or y = a cos bx, where b > 0. Determine the equation of the graph. -

(Multiple Choice)
4.8/5
(28)

Solve the problem. -A weight attached to a spring is pulled down 9 inches below the equilibrium position. Assuming that the frequency of the system is 5π\frac { 5 } { \pi } cycles per second, determine a trigonometric model that gives the position of the weight at time tt seconds.

(Multiple Choice)
4.9/5
(39)
Showing 101 - 120 of 289
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)