Exam 4: Graphs of the Circular Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Match the function with its graph. -1) y=cscxy = - \csc x 2) y=secxy = - \sec x 3) y=tanxy = - \tan x 4) y=cotxy = - \cot x a)  Match the function with its graph. -1)  y = - \csc x  2)  y = - \sec x  3)  y = - \tan x  4)  y = - \cot x   a)    b)    c)    d)     b)  Match the function with its graph. -1)  y = - \csc x  2)  y = - \sec x  3)  y = - \tan x  4)  y = - \cot x   a)    b)    c)    d)     c)  Match the function with its graph. -1)  y = - \csc x  2)  y = - \sec x  3)  y = - \tan x  4)  y = - \cot x   a)    b)    c)    d)     d)  Match the function with its graph. -1)  y = - \csc x  2)  y = - \sec x  3)  y = - \tan x  4)  y = - \cot x   a)    b)    c)    d)

Free
(Multiple Choice)
4.9/5
(29)
Correct Answer:
Verified

D

Graph the function. - y=23sin(x+π2)y=\frac{2}{3} \sin \left(x+\frac{\pi}{2}\right)  Graph the function. - y=\frac{2}{3} \sin \left(x+\frac{\pi}{2}\right)

Free
(Multiple Choice)
4.9/5
(22)
Correct Answer:
Verified

D

Use Identities to find the exact value. -Tides go up and down in a 14.8-hour period. The average depth of a certain river is 7 m and ranges from 4 to 10 m. The variation can be approximated by a sine curve. Write an equation that gives the Approximate variation y, if x is the number of hours after midnight and high tide occurs at 5:00 am.

Free
(Multiple Choice)
4.7/5
(34)
Correct Answer:
Verified

A

Graph the function. - y=25sec(12xπ4)y=\frac{2}{5} \sec \left(\frac{1}{2} x-\frac{\pi}{4}\right)  Graph the function. - y=\frac{2}{5} \sec \left(\frac{1}{2} x-\frac{\pi}{4}\right)

(Multiple Choice)
4.8/5
(39)

Give the amplitude or period as requested. -Period of y = sin 3x

(Multiple Choice)
4.9/5
(36)

Find the phase shift of the function. - y=3cos(4x+π)y = - 3 \cos ( 4 x + \pi )

(Multiple Choice)
4.8/5
(31)

Solve the problem. -The voltage E in an electrical circuit is given by E = 1.3 cos 100πt, where t is time measured in seconds. Find the period.

(Multiple Choice)
4.9/5
(38)

Solve the problem. -A weight attached to a spring is pulled down 8 inches below the equilibrium position. Assuming that the frequency of the system is 5π\frac { 5 } { \pi } cycles per second, determine a trigonometric model that gives the position of the weight at time tt second.

(Multiple Choice)
4.8/5
(35)

Graph the function. - y=sinπxy=\sin \pi x  Graph the function. - y=\sin \pi x

(Multiple Choice)
4.8/5
(32)

Find the phase shift of the function. - y=32sin(4xπ3)y = - 3 - 2 \sin \left( 4 x - \frac { \pi } { 3 } \right)

(Multiple Choice)
4.8/5
(32)

The function graphed is of the form y = cos x + c, y = sin x + c, y = cos(x - d), or y = sin(x - d), where d is the least possible positive value. Determine the equation of the graph. -The function graphed is of the form y = cos x + c, y = sin x + c, y = cos(x - d), or y = sin(x - d), where d is the least possible positive value. Determine the equation of the graph. -

(Multiple Choice)
4.9/5
(30)

Graph the function. - y=2+sin(x+π2)y=-2+\sin \left(x+\frac{\pi}{2}\right)  Graph the function. - y=-2+\sin \left(x+\frac{\pi}{2}\right)

(Multiple Choice)
4.9/5
(32)

Graph the function. - y=12tanxy = \frac { 1 } { 2 } \tan x  Graph the function. - y = \frac { 1 } { 2 } \tan x

(Multiple Choice)
4.8/5
(25)

Find the specified quantity. -Find the period of y=3cos(3x+π2)y = 3 \cos \left( 3 x + \frac { \pi } { 2 } \right) .

(Multiple Choice)
4.9/5
(37)

Give the amplitude or period as requested. -Amplitude of y=cos13xy = \cos \frac { 1 } { 3 } x

(Multiple Choice)
4.8/5
(31)

Solve the problem. -The temperature in Fairbanks is approximated by T(x)=37sin[2π365(x101)]+25T ( x ) = 37 \sin \left[ \frac { 2 \pi } { 365 } ( x - 101 ) \right] + 25 where T(x)\mathrm { T } ( \mathrm { x } ) is the temperature on day xx , with x=1x = 1 corresponding to Jan. 1 and x=365x = 365 corresponding to Dec. 31. Estimate the temperature on day 49 .

(Multiple Choice)
4.7/5
(32)

Find the phase shift of the function. - y=2sin(xπ4)y = - 2 \sin \left( x - \frac { \pi } { 4 } \right)

(Multiple Choice)
4.9/5
(32)

Find the specified quantity. -Find the amplitude of y=4sin(2x+π)y = - 4 \sin ( 2 x + \pi ) .

(Multiple Choice)
4.8/5
(36)

Find the phase shift of the function. - y=sin(x+π4)y = \sin \left( x + \frac { \pi } { 4 } \right)

(Multiple Choice)
4.8/5
(30)

Match the function with its graph. -1) y=tanxy = \tan x 2) y=cotxy = \cot x 3) y=tanxy = - \tan x 4) y=cotxy = - \cot x a)  Match the function with its graph. -1)  y = \tan x  2)  y = \cot x  3)  y = - \tan x  4)  y = - \cot x  a)    b)    c)    d)     b)  Match the function with its graph. -1)  y = \tan x  2)  y = \cot x  3)  y = - \tan x  4)  y = - \cot x  a)    b)    c)    d)     c)  Match the function with its graph. -1)  y = \tan x  2)  y = \cot x  3)  y = - \tan x  4)  y = - \cot x  a)    b)    c)    d)     d)  Match the function with its graph. -1)  y = \tan x  2)  y = \cot x  3)  y = - \tan x  4)  y = - \cot x  a)    b)    c)    d)

(Multiple Choice)
4.8/5
(27)
Showing 1 - 20 of 137
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)