Exam 4: Graphs of the Circular Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the problem. -The chart represents the amount of fuel consumed by a machine used in manufacturing. The machine is turned on at the beginning of the day, takes a certain amount of time to reach its full Power (the point at which it uses the most fuel per hour), runs for a certain number of hours, and is Shut off at the end of the work day. The fuel usage per hour of the machine is represented by a Periodic function. What is the period in hours of this function? Solve the problem. -The chart represents the amount of fuel consumed by a machine used in manufacturing. The machine is turned on at the beginning of the day, takes a certain amount of time to reach its full Power (the point at which it uses the most fuel per hour), runs for a certain number of hours, and is Shut off at the end of the work day. The fuel usage per hour of the machine is represented by a Periodic function. What is the period in hours of this function?

(Multiple Choice)
4.8/5
(37)

The function graphed is of the form y = a sin bx or y = a cos bx, where b > 0. Determine the equation of the graph.  The function graphed is of the form y = a sin bx or y = a cos bx, where b > 0. Determine the equation of the graph.   A)  y = 4 \cos \left( \frac { 1 } { 2 } x \right)  B)  y = - 4 \cos ( 2 x )  C)  y = - 4 \cos \left( \frac { 1 } { 2 } x \right)  D)  y = 4 \sin ( 2 x )  -The function graphed is of the form y = a sin bx or y = a cos bx, where b > 0. Determine the equation of the graph.   A) y=4cos(12x)y = 4 \cos \left( \frac { 1 } { 2 } x \right) B) y=4cos(2x)y = - 4 \cos ( 2 x ) C) y=4cos(12x)y = - 4 \cos \left( \frac { 1 } { 2 } x \right) D) y=4sin(2x)y = 4 \sin ( 2 x ) -The function graphed is of the form y = a sin bx or y = a cos bx, where b > 0. Determine the equation of the graph.  The function graphed is of the form y = a sin bx or y = a cos bx, where b > 0. Determine the equation of the graph.   A)  y = 4 \cos \left( \frac { 1 } { 2 } x \right)  B)  y = - 4 \cos ( 2 x )  C)  y = - 4 \cos \left( \frac { 1 } { 2 } x \right)  D)  y = 4 \sin ( 2 x )  -The function graphed is of the form y = a sin bx or y = a cos bx, where b > 0. Determine the equation of the graph.

(Multiple Choice)
4.9/5
(29)

The function graphed is of the form y = a tan bx or y = a cot bx, where b > 0. Determine the equation of the graph. -The function graphed is of the form y = a tan bx or y = a cot bx, where b > 0. Determine the equation of the graph. -

(Multiple Choice)
4.9/5
(27)

Solve the problem. -The position of a weight attached to a spring is s(t)=5cos5πts ( t ) = - 5 \cos 5 \pi t inches after tt seconds. When does the weight first reach its maximum height?

(Multiple Choice)
5.0/5
(36)

Solve the problem. -The position of a weight attached to a spring is s(t)=3cos7ts ( t ) = - 3 \cos 7 t inches after tt seconds. What are the frequency and period of the system?

(Multiple Choice)
4.8/5
(33)

The function graphed is of the form y = a sin bx or y = a cos bx, where b > 0. Determine the equation of the graph. -The function graphed is of the form y = a sin bx or y = a cos bx, where b > 0. Determine the equation of the graph. -

(Multiple Choice)
4.8/5
(39)

Solve the problem. -The total sales in dollars of some small businesses fluctuates according to the equation S=A+Bsinπx/6\mathrm { S } = \mathrm { A } + \mathrm { B } \sin \pi \mathrm { x } / 6 , where x\mathrm { x } is the time in months, with x=1\mathrm { x } = 1 corresponding to January, A=5900\mathrm { A } = 5900 , and B=2700B = 2700 . Determine the month with the greatest total sales and give the sales in that month.

(Multiple Choice)
4.7/5
(36)

Find the specified quantity. -Find the amplitude of y=2cos(3x+π4)y = - 2 \cos \left( 3 x + \frac { \pi } { 4 } \right) .

(Multiple Choice)
4.7/5
(31)

Solve the problem. -A pendulum of length L\mathrm { L } , when displaced horizontally and released, oscillates with harmonic motion according to the equation y=Asin((g/L)t+π/2)\mathrm { y } = \mathrm { A } \sin ( ( \sqrt { \mathrm { g } / \mathrm { L } } ) \mathrm { t } + \pi / 2 ) , where y\mathrm { y } is the distance in meters from the rest position tt seconds after release, and g=9.8 m/sec2g = 9.8 \mathrm {~m} / \mathrm { sec } ^ { 2 } . Identify the period, amplitude, and phase shift when A=0.39 m\mathrm { A } = 0.39 \mathrm {~m} and L=0.49 m\mathrm { L } = 0.49 \mathrm {~m} . Round all answers to the nearest hundredth.

(Multiple Choice)
4.9/5
(37)

Graph the function. - y=35cot(12xπ6)y=-\frac{3}{5} \cot \left(\frac{1}{2} x-\frac{\pi}{6}\right)  Graph the function. - y=-\frac{3}{5} \cot \left(\frac{1}{2} x-\frac{\pi}{6}\right)

(Multiple Choice)
4.8/5
(41)

Match the function with its graph. -1) y=sin(xπ3)y = \sin \left( x - \frac { \pi } { 3 } \right) 2) y=cos(x+π3)y = \cos \left( x + \frac { \pi } { 3 } \right) 3) y=sin(x+π3)y = \sin \left( x + \frac { \pi } { 3 } \right) 4) y=cos(xπ3)y = \cos \left( x - \frac { \pi } { 3 } \right) a)  Match the function with its graph. -1)  y = \sin \left( x - \frac { \pi } { 3 } \right)  2)  y = \cos \left( x + \frac { \pi } { 3 } \right)  3)  y = \sin \left( x + \frac { \pi } { 3 } \right)  4)  y = \cos \left( x - \frac { \pi } { 3 } \right)  a)    b)    c)    d)    b)  Match the function with its graph. -1)  y = \sin \left( x - \frac { \pi } { 3 } \right)  2)  y = \cos \left( x + \frac { \pi } { 3 } \right)  3)  y = \sin \left( x + \frac { \pi } { 3 } \right)  4)  y = \cos \left( x - \frac { \pi } { 3 } \right)  a)    b)    c)    d)    c)  Match the function with its graph. -1)  y = \sin \left( x - \frac { \pi } { 3 } \right)  2)  y = \cos \left( x + \frac { \pi } { 3 } \right)  3)  y = \sin \left( x + \frac { \pi } { 3 } \right)  4)  y = \cos \left( x - \frac { \pi } { 3 } \right)  a)    b)    c)    d)    d)  Match the function with its graph. -1)  y = \sin \left( x - \frac { \pi } { 3 } \right)  2)  y = \cos \left( x + \frac { \pi } { 3 } \right)  3)  y = \sin \left( x + \frac { \pi } { 3 } \right)  4)  y = \cos \left( x - \frac { \pi } { 3 } \right)  a)    b)    c)    d)

(Multiple Choice)
5.0/5
(35)

Graph the function. - y=23sec(xπ5)y=2-3 \sec \left(x-\frac{\pi}{5}\right)  Graph the function. - y=2-3 \sec \left(x-\frac{\pi}{5}\right)

(Multiple Choice)
4.9/5
(40)

The function graphed is of the form y = a sin bx or y = a cos bx, where b > 0. Determine the equation of the graph. -The function graphed is of the form y = a sin bx or y = a cos bx, where b > 0. Determine the equation of the graph. -

(Multiple Choice)
4.9/5
(39)

Solve the problem. -The minimum length L\mathrm { L } of a highway sag curve can be computed by L=(θ2θ1)S2200( h+Stanα)\mathrm { L } = \frac { \left( \theta _ { 2 } - \theta _ { 1 } \right) \mathrm { S } ^ { 2 } } { 200 ( \mathrm {~h} + \mathrm { S } \tan \alpha ) } where θ1\theta _ { 1 } is the downhill grade in degrees (θ1<0),θ2\left( \theta _ { 1 } < 0 ^ { \circ } \right) , \theta _ { 2 } is the uphill grade in degrees (θ2>0)\left( \theta _ { 2 } > 0 ^ { \circ } \right) , S\mathrm { S } is the safe stopping distance for a given speed limit, hh is the height of the headlights, and α\alpha is the alignment of the headlights in degrees. Compute LL for a 55-mph speed limit, where h=1.9fth = 1.9 \mathrm { ft } , α=0.7,θ1=5,θ2=4\alpha = 0.7 ^ { \circ } , \theta _ { 1 } = - 5 ^ { \circ } , \theta _ { 2 } = 4 ^ { \circ } , and S=336ftS = 336 \mathrm { ft } . Round your answer to the nearest foot.

(Multiple Choice)
4.9/5
(31)

Match the function with its graph. 29 -1) y=tan(xπ2)y = - \tan \left( x - \frac { \pi } { 2 } \right) 2) y=tan(x+π2)y = \tan \left( x + \frac { \pi } { 2 } \right) 3) y=cot(xπ2)y = - \cot \left( x - \frac { \pi } { 2 } \right) 4) y=cot(x+π2)y = \cot \left( x + \frac { \pi } { 2 } \right) a)  Match the function with its graph. 29 -1)  y = - \tan \left( x - \frac { \pi } { 2 } \right)  2)  y = \tan \left( x + \frac { \pi } { 2 } \right)  3)  y = - \cot \left( x - \frac { \pi } { 2 } \right)  4)  y = \cot \left( x + \frac { \pi } { 2 } \right)  a)    b)    c)    d)    b)  Match the function with its graph. 29 -1)  y = - \tan \left( x - \frac { \pi } { 2 } \right)  2)  y = \tan \left( x + \frac { \pi } { 2 } \right)  3)  y = - \cot \left( x - \frac { \pi } { 2 } \right)  4)  y = \cot \left( x + \frac { \pi } { 2 } \right)  a)    b)    c)    d)    c)  Match the function with its graph. 29 -1)  y = - \tan \left( x - \frac { \pi } { 2 } \right)  2)  y = \tan \left( x + \frac { \pi } { 2 } \right)  3)  y = - \cot \left( x - \frac { \pi } { 2 } \right)  4)  y = \cot \left( x + \frac { \pi } { 2 } \right)  a)    b)    c)    d)    d)  Match the function with its graph. 29 -1)  y = - \tan \left( x - \frac { \pi } { 2 } \right)  2)  y = \tan \left( x + \frac { \pi } { 2 } \right)  3)  y = - \cot \left( x - \frac { \pi } { 2 } \right)  4)  y = \cot \left( x + \frac { \pi } { 2 } \right)  a)    b)    c)    d)

(Multiple Choice)
4.7/5
(27)

Graph the function over a one-period interval. - y=4+2sin(xπ)y=4+2 \sin (x-\pi)  Graph the function over a one-period interval. - y=4+2 \sin (x-\pi)

(Multiple Choice)
4.8/5
(29)

Solve the problem. -The voltage EE in an electrical circuit is given by E=1.7cos110πtE = 1.7 \cos 110 \pi t , where tt is time measured in seconds. Find the frequency of the function (that is, find the number of cycles or periods completed in one second).

(Multiple Choice)
4.9/5
(37)

Graph the function. - y=12csc(12xπ4)y=-\frac{1}{2} \csc \left(\frac{1}{2} x-\frac{\pi}{4}\right)  Graph the function. - y=-\frac{1}{2} \csc \left(\frac{1}{2} x-\frac{\pi}{4}\right)

(Multiple Choice)
4.8/5
(34)

Graph the function over a one-period interval. - y=13cos4(xπ)y=-\frac{1}{3} \cos 4(x-\pi)  Graph the function over a one-period interval. - y=-\frac{1}{3} \cos 4(x-\pi)

(Multiple Choice)
4.7/5
(39)

Find the phase shift of the function. - y=2sin(14xπ4)y = - 2 \sin \left( \frac { 1 } { 4 } x - \frac { \pi } { 4 } \right)

(Multiple Choice)
4.7/5
(32)
Showing 21 - 40 of 137
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)