Exam 6: Inverse Circular Functions and Trigonometric Equations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve the problem. -The optimal angle of elevation θ\theta that a shot-putter should aim for in order to throw the greatest distance depends on the velocity v\mathrm { v } of the throw and the initial height hh of the shot. One model for θ\theta that achieves this maximum distance is θ=sin1(v22v2+64 h)\theta = \sin ^ { - 1 } \left( \sqrt { \frac { \mathrm { v } ^ { 2 } } { 2 \mathrm { v } ^ { 2 } + 64 \mathrm {~h} } } \right) . Suppose a shot-putter can consistently release the steel ball with velocity of 40 feet per second from an initial height hh of 5.75.7 feet. What angle, to the nearest degree, will maximize the distance?

Free
(Multiple Choice)
4.8/5
(45)
Correct Answer:
Verified

B

Write the following as an algebraic expression in u, u > 0. - tan(cos1u3)\tan \left( \cos ^ { - 1 } \frac { \mathrm { u } } { 3 } \right)

Free
(Multiple Choice)
4.7/5
(32)
Correct Answer:
Verified

C

Find the exact value of the real number y. - y=arccos(32)y = \arccos \left( \frac { \sqrt { 3 } } { 2 } \right)

Free
(Multiple Choice)
4.8/5
(30)
Correct Answer:
Verified

B

Use a calculator to find the value. Give answers as real numbers and round to 4 decimal places, if necessary. - cos(cos1(0.9372))\cos \left( \cos ^ { - 1 } ( - 0.9372 ) \right)

(Multiple Choice)
4.8/5
(38)

Solve the problem. -Snell's Law states that sinθ1sinθ2=v1v2\frac { \sin \theta _ { 1 } } { \sin \theta _ { 2 } } = \frac { \mathrm { v } _ { 1 } } { \mathrm { v } _ { 2 } } where v1,v2v _ { 1 } , v _ { 2 } are the speeds at which light travels through two different mediums, and θ1,θ2\theta _ { 1 } , \theta _ { 2 } are the angles of incidence and refraction respectively. Find the angle of refraction if v1v2=1.6\frac { \mathrm { v } _ { 1 } } { \mathrm { v } _ { 2 } } = 1.6 and the angle of incidence is 2626 ^ { \circ } . Give your answer in degrees to the nearest hundredth.

(Multiple Choice)
4.8/5
(40)

Solve the equation for solutions over the interval [ [0,2π)[ 0,2 \pi ) ). Write solutions as exact values or to four decimal places, as appropriate. - sinx2+cosx2=0\sin \frac { x } { 2 } + \cos \frac { x } { 2 } = 0

(Multiple Choice)
4.8/5
(36)

Use a calculator to give the real number value. Round the answer to 7 decimal places. - y=sin1(0.4848)y = \sin ^ { - 1 } ( - 0.4848 )

(Multiple Choice)
5.0/5
(30)

Use the parallelogram rule to find the magnitude of the resultant force for the two forces shown in the figure. Round to one decimal place. -The equation sin2xcos3x=4\sin 2 x - \cos 3 x = - 4 has no solution in the interval [0,2π)[ 0,2 \pi ) . Explain what this tells you about the graph of y=sin2xcos3x+4y = \sin 2 x - \cos 3 x + 4 .

(Essay)
4.8/5
(35)

Solve the equation for solutions over the interval [ [0,2π).[ 0,2 \pi ) . ). Write solutions as exact values or to four decimal places, as appropriate. - sinx2+cosx2=2\sin \frac { x } { 2 } + \cos \frac { x } { 2 } = \sqrt { 2 }

(Multiple Choice)
4.8/5
(33)

Solve the problem. -A generator produces an alternating current according to the equation I=16sin88πt\mathrm { I } = 16 \sin 88 \pi \mathrm { t } , where tt is time in seconds and I\mathrm { I } is the current in amperes. What is the smallest time t\mathrm { t } such that I=8\mathrm { I } = 8 ?

(Multiple Choice)
4.8/5
(28)

Give the exact value of the expression. - cos(arcsin14)\cos \left( \arcsin \frac { 1 } { 4 } \right)

(Multiple Choice)
4.8/5
(35)

Find the exact value of the real number y. -y = arcsec ( )

(Multiple Choice)
4.9/5
(33)

Solve the equation for solutions in the interval [0°, 360°). Round to the nearest degree. - cos2θ2=1\cos ^ { 2 } \frac { \theta } { 2 } = 1

(Multiple Choice)
4.9/5
(33)

Solve the equation (x in radians and in degrees) for all exact solutions where appropriate. Round approximate answers in radians to four decimal places and approximate answers in degrees to the nearest tenth. - 4sin2x1=04 \sin ^ { 2 } x - 1 = 0

(Multiple Choice)
4.9/5
(30)

Use a calculator to give the real number value. Round the answer to 7 decimal places. - y=tan1(0.7002)y = \tan ^ { - 1 } ( - 0.7002 )

(Multiple Choice)
4.8/5
(38)

Graph the inverse circular function. - y=arcsec3xy = \operatorname { arcsec } 3 x  Graph the inverse circular function. - y = \operatorname { arcsec } 3 x

(Multiple Choice)
4.9/5
(42)

Solve the equation for solutions in the interval [0, 2 [0,2π)[ 0,2 \pi ) \text {. } - sin4x=32\sin 4 x = \frac { \sqrt { 3 } } { 2 }

(Multiple Choice)
4.8/5
(40)

Use a calculator to give the value to the nearest degree. - θ=tan1(0.5774)\theta = \tan ^ { - 1 } ( 0.5774 )

(Multiple Choice)
4.9/5
(29)

Solve the equation for exact solutions. - arccosx+arccos2x=arccos12\arccos x + \arccos 2 x = \arccos \frac { 1 } { 2 }

(Multiple Choice)
4.9/5
(32)

Give the degree measure of . -ϴ = arccos (0)

(Multiple Choice)
4.9/5
(26)
Showing 1 - 20 of 179
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)