Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use the figure below to determine the exact value of the given function. sin2θ\sin 2 \theta  Use the figure below to determine the exact value of the given function.  \sin 2 \theta

(Multiple Choice)
4.9/5
(33)

Use the graph of the function f(x)=2cos(x)+sin(x)f ( x ) = - 2 \cos ( x ) + \sin ( x ) to approximate the maximum points of the graph in the interval [0,2π][ 0,2 \pi ] . Round your answer to one decimal.  Use the graph of the function  f ( x ) = - 2 \cos ( x ) + \sin ( x )  to approximate the maximum points of the graph in the interval  [ 0,2 \pi ] . Round your answer to one decimal.

(Multiple Choice)
4.8/5
(36)

Use the cofunction identities to evaluate the expression below without the aid of a calculator. sin262+sin230+sin228+sin260\sin ^ { 2 } 62 ^ { \circ } + \sin ^ { 2 } 30 ^ { \circ } + \sin ^ { 2 } 28 ^ { \circ } + \sin ^ { 2 } 60 ^ { \circ }

(Multiple Choice)
4.9/5
(41)

Which of the following is equivalent to the given expression? cot2xcscx+1\frac { \cot ^ { 2 } x } { \csc x + 1 }

(Multiple Choice)
4.9/5
(42)

Use the half-angle formulas to determine the exact value of the following. cos(22.5)\cos \left( 22.5 ^ { \circ } \right)

(Multiple Choice)
4.9/5
(37)

Use the product-to-sum formulas to write the expression below as a sum or difference. sin(8θ)cos(6θ)\sin ( 8 \theta ) \cos ( 6 \theta )

(Multiple Choice)
4.8/5
(37)

Find the exact value of cos(u+v)\cos ( u + v ) given that sinu=1161\sin u = \frac { 11 } { 61 } and cosv=4041\cos v = - \frac { 40 } { 41 } . (Both uu and vv are in Quadrant II.)

(Multiple Choice)
4.9/5
(41)

Use a double angle formula to rewrite the following expression. 16sin(x)cos(x)- 16 \sin ( x ) \cos ( x )

(Multiple Choice)
4.8/5
(35)

Use a double-angle formula to find the exact value of cos2u\cos 2 u when sinu=817\sin u = \frac { 8 } { 17 } , where π2<u<π\frac { \pi } { 2 } < u < \pi .

(Multiple Choice)
4.8/5
(49)

Solve the multi-angle equation below. sin(2x)=22\sin ( 2 x ) = - \frac { \sqrt { 2 } } { 2 }

(Multiple Choice)
4.7/5
(36)

Use the graph below of the function to approximate the solutions to 4cos(2x)cos(x)=04 \cos ( 2 x ) - \cos ( x ) = 0 in the interval [0,2π)[ 0,2 \pi ) . Round your answers to one decimal.  Use the graph below of the function to approximate the solutions to  4 \cos ( 2 x ) - \cos ( x ) = 0  in the interval  [ 0,2 \pi ) . Round your answers to one decimal.

(Multiple Choice)
4.7/5
(38)

Expand the expression below and use fundamental trigonometric identities to simplify. (sin(ω)+cos(ω))2( \sin ( \omega ) + \cos ( \omega ) ) ^ { 2 }

(Multiple Choice)
4.8/5
(39)

Which of the following is a solution to the given equation? cotx+1=0\cot x + 1 = 0

(Multiple Choice)
4.8/5
(30)

Use a double-angle formula to find the exact value of cos2u\cos 2 u when sinu=513\sin u = \frac { 5 } { 13 } , where π2<u<π\frac { \pi } { 2 } < u < \pi .

(Multiple Choice)
4.9/5
(44)

Verify the identity shown below. tanα+cotβtanαcotβ=tanβ+cotα\frac { \tan \alpha + \cot \beta } { \tan \alpha \cot \beta } = \tan \beta + \cot \alpha

(Essay)
4.9/5
(41)

Solve the following trigonometric equation on the interval [0,2π)[ 0,2 \pi ) . sin(x)+cos(x)=0\sin ( x ) + \cos ( x ) = 0

(Multiple Choice)
5.0/5
(41)

Add or subtract as indicated; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent. sinx+1+1sinx1\sin x + 1 + \frac { 1 } { \sin x - 1 }

(Multiple Choice)
4.8/5
(38)

The rate of change of the function f(x)=cscxsinxf ( x ) = - \csc x - \sin x is given by the expression cscxcotxcosx\csc x \cot x - \cos x . Which of the following is its simplification?

(Multiple Choice)
4.8/5
(39)

Verify the identity shown below. sin2θ1cos2θ1=csc2θ1\frac { \sin ^ { 2 } \theta - 1 } { \cos ^ { 2 } \theta - 1 } = \csc ^ { 2 } \theta - 1

(Essay)
4.8/5
(41)

Solve the multi-angle equation below. sin(2x)=22\sin ( 2 x ) = - \frac { \sqrt { 2 } } { 2 }

(Multiple Choice)
5.0/5
(37)
Showing 61 - 80 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)