Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Determine which of the following are trigonometric identities. cos(4x)cos(2x)2tan(3x)=tan(x)\frac { \cos ( 4 x ) - \cos ( 2 x ) } { 2 \tan ( 3 x ) } = - \tan ( x ) cos(3x)cos(x)sin(3x)sin(x)=tan(2x)\frac { \cos ( 3 x ) - \cos ( x ) } { \sin ( 3 x ) - \sin ( x ) } = - \tan ( 2 x ) cos(6x)cos(2x)sin(4x)+sin(2x)=tan(3x\frac { \cos ( 6 x ) - \cos ( 2 x ) } { \sin ( 4 x ) + \sin ( 2 x ) } = - \tan ( 3 x

(Multiple Choice)
4.9/5
(33)

Verify the given identity. sin5x+sin3xcos5x+cos3x=tan4x\frac { \sin 5 x + \sin 3 x } { \cos 5 x + \cos 3 x } = \tan 4 x

(Essay)
4.8/5
(37)

Approximate the solutions of the equation 2sin2(x)=2cos(x)+12 \sin ^ { 2 } ( x ) = 2 \cos ( x ) + 1 by considering its graph below. Round your answer to one decimal.  Approximate the solutions of the equation  2 \sin ^ { 2 } ( x ) = 2 \cos ( x ) + 1  by considering its graph below. Round your answer to one decimal.

(Multiple Choice)
4.8/5
(40)

Use the product-to-sum formula to write the given product as a sum or difference. 6sinπ8cosπ86 \sin \frac { \pi } { 8 } \cos \frac { \pi } { 8 }

(Multiple Choice)
4.8/5
(41)

Determine the exact value of the following expression. cos(1200)\cos \left( 120 ^ { \circ } - 0 ^ { \circ } \right)

(Multiple Choice)
4.9/5
(33)

Write the given expression as the sine of an angle. sin75cos35sin35cos75\sin 75 ^ { \circ } \cos 35 ^ { \circ } - \sin 35 ^ { \circ } \cos 75 ^ { \circ }

(Multiple Choice)
4.7/5
(44)

Solve the following equation. 3csc2(x)4=03 \csc ^ { 2 } ( x ) - 4 = 0

(Multiple Choice)
4.8/5
(37)

Find the exact value of tan(u+v)\tan ( u + v ) given that sinu=1161\sin u = - \frac { 11 } { 61 } and cosv=4041\cos v = \frac { 40 } { 41 } . (Both uu and vv are in Quadrant IV.)

(Multiple Choice)
4.7/5
(36)

Approximate the solutions of the equation 2sin2(x)+5sin(x)2=02 \sin ^ { 2 } ( x ) + 5 \sin ( x ) - 2 = 0 by considering its graph below. Round your answer to one decimal.  Approximate the solutions of the equation  2 \sin ^ { 2 } ( x ) + 5 \sin ( x ) - 2 = 0  by considering its graph below. Round your answer to one decimal.

(Multiple Choice)
4.8/5
(35)

Verify the identity shown below. tanθ+1secθ+cscθ=sinθ\frac { \tan \theta + 1 } { \sec \theta + \csc \theta } = \sin \theta

(Essay)
4.8/5
(48)

Verify the given identity. sinu+sinvcosu+cosv=tan12(u+v)\frac { \sin u + \sin v } { \cos u + \cos v } = \tan \frac { 1 } { 2 } ( u + v )

(Essay)
4.9/5
(25)

Find the exact value of tan(u+v)\tan ( u + v ) given that sinu=725\sin u = - \frac { 7 } { 25 } and cosv=1213\cos v = \frac { 12 } { 13 } . (Both uu and vv are in Quadrant IV.)

(Multiple Choice)
4.8/5
(42)

Multiply; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent. (sinx+cosx)(sinxcosx)( \sin x + \cos x ) ( \sin x - \cos x )

(Multiple Choice)
4.9/5
(43)

Find the exact value of cos(u+v)\cos ( u + v ) given that sinu=941\sin u = \frac { 9 } { 41 } and cosv=1517\cos v = - \frac { 15 } { 17 } . (Both uu and vv are in Quadrant II.)

(Multiple Choice)
4.8/5
(49)

Use the sum-to-product formulas to write the given expression as a product. cos8θcos6θ\cos 8 \theta - \cos 6 \theta

(Multiple Choice)
4.7/5
(35)

Use the graph below of the function to approximate the solutions to 4cos(2x)cos(x)=04 \cos ( 2 x ) - \cos ( x ) = 0 in the interval [0,2π)[ 0,2 \pi ) . Round your answers to one decimal.  Use the graph below of the function to approximate the solutions to  4 \cos ( 2 x ) - \cos ( x ) = 0  in the interval  [ 0,2 \pi ) . Round your answers to one decimal.

(Multiple Choice)
4.9/5
(42)

Solve the multi-angle equation below. sin(2x)=32\sin ( 2 x ) = \frac { \sqrt { 3 } } { 2 }

(Multiple Choice)
4.7/5
(38)

Determine which of the following are trigonometric identities. I. cos(4x)+cos(2x)2cot(3x)=cot(x)\frac { \cos ( 4 x ) + \cos ( 2 x ) } { 2 \cot ( 3 x ) } = \cot ( x ) II. cos(4x)+cos(x)sin(3x)sin(x)=cot(2x)\frac { \cos ( 4 x ) + \cos ( x ) } { \sin ( 3 x ) - \sin ( x ) } = \cot ( 2 x ) III. cos(6x)+cos(2x)sin(4x)+sin(2x)=cot(3x)\frac { \cos ( 6 x ) + \cos ( 2 x ) } { \sin ( 4 x ) + \sin ( 2 x ) } = \cot ( 3 x )

(Multiple Choice)
4.8/5
(34)

Verify the identity shown below. sec2μcot2(π2μ)=1\sec ^ { 2 } \mu - \cot ^ { 2 } \left( \frac { \pi } { 2 } - \mu \right) = 1

(Essay)
5.0/5
(40)

Factor; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent. sin3xsin2xsinx+1\sin ^ { 3 } x - \sin ^ { 2 } x - \sin x + 1

(Multiple Choice)
4.9/5
(41)
Showing 101 - 120 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)