Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use the figure below to find the exact value of the given trigonometric expression. cotx2\cot \frac { x } { 2 }  Use the figure below to find the exact value of the given trigonometric expression.  \cot \frac { x } { 2 }

(Multiple Choice)
4.9/5
(41)

Which of the following is a solution to the given equation? secx2=0\sec x - 2 = 0

(Multiple Choice)
4.7/5
(36)

Solve the multiple-angle equation in the interval [0,2π)[ 0,2 \pi ) . sec2x=2\sec 2 x = 2

(Multiple Choice)
4.8/5
(38)

Use the half-angle formula to simplify the given expression. 1+cos16x2\sqrt { \frac { 1 + \cos 16 x } { 2 } }

(Multiple Choice)
4.7/5
(34)

Use fundamental identities to simplify the expression below and then determine which of the following is not equivalent. sinα(cscαsinα)\sin \alpha ( \csc \alpha - \sin \alpha )

(Multiple Choice)
4.9/5
(30)

Determine which of the following are trigonometric identities. I. sin(θ)+cot(θ)cos(θ)=csc(θ)\sin ( \theta ) + \cot ( \theta ) \cos ( \theta ) = \csc ( \theta ) II. cot(θ)sin(θ)cos(θ)=0\cot ( \theta ) - \sin ( \theta ) \cos ( \theta ) = 0 III. sin(θ)+sin(θ)cos(θ)=csc(θ)\sin ( \theta ) + \sin ( \theta ) \cos ( \theta ) = \csc ( \theta )

(Multiple Choice)
4.8/5
(32)

Which of the following is a solution to the given equation? 2sinx1=02 \sin x - 1 = 0

(Multiple Choice)
4.8/5
(40)

If x=8cosθx = 8 \cos \theta , use trigonometric substitution to write 64x2\sqrt { 64 - x ^ { 2 } } as a trigonometric function of θ\theta , where 0<θ<π0 < \theta < \pi .

(Multiple Choice)
4.9/5
(37)

Solve the following equation. tan2x+tanx=0\tan ^ { 2 } x + \tan x = 0

(Multiple Choice)
4.7/5
(36)

Verify the identity shown below. sec2(π2y)1=cot2y\sec ^ { 2 } \left( \frac { \pi } { 2 } - y \right) - 1 = \cot ^ { 2 } y

(Essay)
4.8/5
(38)

Determine which of the following are trigonometric identities. I. sin(t)+sin(s)cos(t)cos(s)+cos(t)+cos(s)sin(t)sin(s)=0\frac { \sin ( t ) + \sin ( s ) } { \cos ( t ) - \cos ( s ) } + \frac { \cos ( t ) + \cos ( s ) } { \sin ( t ) - \sin ( s ) } = 0 II. sin(t)+sin(s)cos(t)+cos(s)+cos(t)+cos(s)sin(t)+sin(s)=1\frac { \sin ( \mathrm { t } ) + \sin ( \mathrm { s } ) } { \cos ( \mathrm { t } ) + \cos ( \mathrm { s } ) } + \frac { \cos ( \mathrm { t } ) + \cos ( \mathrm { s } ) } { \sin ( \mathrm { t } ) + \sin ( \mathrm { s } ) } = 1 III. sin(t)+cos(s)sin(t)cos(s)=sin(s)+cos(t)\frac { \sin ( \mathrm { t } ) + \cos ( \mathrm { s } ) } { \sin ( \mathrm { t } ) \cos ( \mathrm { s } ) } = \sin ( \mathrm { s } ) + \cos ( \mathrm { t } )

(Multiple Choice)
4.8/5
(40)

Factor; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent. tan3xtan2x+tanx1\tan ^ { 3 } x - \tan ^ { 2 } x + \tan x - 1

(Multiple Choice)
4.8/5
(45)

If cscx=433\csc x = \frac { 4 \sqrt { 3 } } { 3 } and cosx<0\cos x < 0 , evaluate the function below. secx\sec x

(Multiple Choice)
5.0/5
(29)

Find the exact solutions of the given equation in the interval [0,2π)[ 0,2 \pi ) . sin2x=sinx\sin 2 x = \sin x

(Multiple Choice)
4.7/5
(40)

Determine which of the following are trigonometric identities. I. sin(y)sin(x)cos(y)+cos(x)+cos(y)cos(x)sin(y)+sin(x)=0\frac { \sin ( y ) - \sin ( x ) } { \cos ( y ) + \cos ( x ) } + \frac { \cos ( y ) - \cos ( x ) } { \sin ( y ) + \sin ( x ) } = 0 II. sin(y)+sin(x)cos(y)+cos(x)+cos(y)+cos(x)sin(y)+sin(x)=1\frac { \sin ( y ) + \sin ( x ) } { \cos ( y ) + \cos ( x ) } + \frac { \cos ( y ) + \cos ( x ) } { \sin ( y ) + \sin ( x ) } = 1 III. sin(y)+cos(x)sin(y)cos(x)=sin(x)+cos(y)\frac { \sin ( y ) + \cos ( x ) } { \sin ( y ) \cos ( x ) } = \sin ( x ) + \cos ( y )

(Multiple Choice)
4.8/5
(35)

Use the graph below of the function to approximate the solutions to 3cos(2x)cos(x)=03 \cos ( 2 x ) - \cos ( x ) = 0 in the interval [0,2π)[ 0,2 \pi ) . Round your answers to one decimal.  Use the graph below of the function to approximate the solutions to  3 \cos ( 2 x ) - \cos ( x ) = 0  in the interval  [ 0,2 \pi ) . Round your answers to one decimal.

(Multiple Choice)
4.9/5
(38)

Solve the multiple-angle equation in the interval [0,2π)[ 0,2 \pi ) . tan2x=1\tan 2 x = - 1

(Multiple Choice)
4.8/5
(31)

Verify the identity shown below. 1secθtanθ=secθ+tanθ\frac { 1 } { \sec \theta - \tan \theta } = \sec \theta + \tan \theta

(Essay)
4.9/5
(37)

Verify the identity shown below. (1+cot2θ)tan2θ=sec2θ\left( 1 + \cot ^ { 2 } \theta \right) \tan ^ { 2 } \theta = \sec ^ { 2 } \theta

(Essay)
5.0/5
(34)

Which of the following is a solution to the given equation? 2cosx+3=02 \cos x + \sqrt { 3 } = 0

(Multiple Choice)
4.8/5
(37)
Showing 41 - 60 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)