Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Simplify the given expression algebraically. cos(π2+x)\cos \left( \frac { \pi } { 2 } + x \right)

(Multiple Choice)
4.8/5
(37)

Solve the multi-angle equation below. cos(x2)=32\cos \left( \frac { x } { 2 } \right) = - \frac { \sqrt { 3 } } { 2 }

(Multiple Choice)
4.8/5
(41)

Use the half-angle formulas to determine the exact value of the following. cos(22.5)\cos \left( - 22.5 ^ { \circ } \right)

(Multiple Choice)
4.8/5
(33)

Verify the identity shown below. 1sinθ1+sinθ=2sec2θ2secθtanθ1\frac { 1 - \sin \theta } { 1 + \sin \theta } = 2 \sec ^ { 2 } \theta - 2 \sec \theta \tan \theta - 1

(Essay)
4.7/5
(34)

If x=2cotθx = 2 \cot \theta , use trigonometric substitution to write 4+x2\sqrt { 4 + x ^ { 2 } } as a trigonometric function of θ\theta , where 0<θ<π0 < \theta < \pi .

(Multiple Choice)
4.9/5
(33)

Verify the identity shown below. tanθ+1secθ+cscθ=sinθ\frac { \tan \theta + 1 } { \sec \theta + \csc \theta } = \sin \theta

(Essay)
4.8/5
(46)

Find all solutions of the following equation in the interval [0,2π)[ 0,2 \pi ) . 2cosxsecx=02 \cos x - \sec x = 0

(Multiple Choice)
4.8/5
(35)

Verify the identity shown below. cscθcosθcotθ=sinθ\csc \theta - \cos \theta \cot \theta = \sin \theta

(Essay)
4.8/5
(38)

Use fundamental identities to simplify the expression below and then determine which of the following is not equivalent. cotβsecβ\cot \beta \sec \beta

(Multiple Choice)
4.9/5
(35)

Use the sum-to-product formulas to write the given expression as a product. sin9θsin7θ\sin 9 \theta - \sin 7 \theta

(Multiple Choice)
4.8/5
(33)

Find the exact value of the given expression using a sum or difference formula. sin345\sin 345 ^ { \circ }

(Multiple Choice)
4.8/5
(35)

Find the exact value of the given expression using a sum or difference formula. sin165\sin 165 ^ { \circ }

(Multiple Choice)
5.0/5
(40)

Determine which of the following are trigonometric identities. I. csc(θ)sec(θ)=tan(θ)\csc ( \theta ) \sec ( \theta ) = \tan ( \theta ) II. csc(θ)tan(θ)=sec(θ)\csc ( \theta ) \tan ( \theta ) = \sec ( \theta ) III. tan(θ)sec(θ)=csc(θ)\tan ( \theta ) \sec ( \theta ) = \csc ( \theta ) IV. csc(θ)sin(θ)=1\csc ( \theta ) \sin ( \theta ) = 1

(Multiple Choice)
4.8/5
(28)

Write the given expression as algebraic expression. cos(arccosxarcsinx)\cos ( \arccos x - \arcsin x )

(Multiple Choice)
4.8/5
(35)

Find the exact value of cos(uv)\cos ( u - v ) given that sinu=941\sin u = - \frac { 9 } { 41 } and cosv=1517\cos v = \frac { 15 } { 17 } . (Both uu and vv are in Quadrant IV.)

(Multiple Choice)
4.7/5
(38)

Write the given expression as the sine of an angle. sin85cos50+sin50cos85\sin 85 ^ { \circ } \cos 50 ^ { \circ } + \sin 50 ^ { \circ } \cos 85 ^ { \circ }

(Multiple Choice)
4.9/5
(41)

Verify the given identity. cosucosvcosu+cosv=tan12(u+v)tan12(uv)\frac { \cos u - \cos v } { \cos u + \cos v } = - \tan \frac { 1 } { 2 } ( u + v ) \tan \frac { 1 } { 2 } ( u - v )

(Essay)
4.9/5
(46)

Verify the given identity. cos(x+y)cos(xy)=cos2xsin2y\cos ( x + y ) \cos ( x - y ) = \cos ^ { 2 } x - \sin ^ { 2 } y

(Essay)
4.9/5
(34)

Simplify the given expression algebraically. cos(π+x)\cos ( \pi + x )

(Multiple Choice)
4.9/5
(36)

Find the exact value of the given expression using a sum or difference formula. cos7π12\cos \frac { 7 \pi } { 12 }

(Multiple Choice)
4.8/5
(26)
Showing 21 - 40 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)