Exam 11: Limits and an Introduction to Calculus

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the graph below to find limx4x+4x+4\lim _ { x \rightarrow - 4 } \frac { | x + 4 | } { x + 4 } , if it exists.  Use the graph below to find  \lim _ { x \rightarrow - 4 } \frac { | x + 4 | } { x + 4 } , if it exists.

(Multiple Choice)
4.8/5
(40)

Find limx85xx+2\lim _ { x \rightarrow 8 } \frac { 5 x } { \sqrt { x + 2 } } by direct substitution.

(Multiple Choice)
4.7/5
(34)

Find limx65x\lim _ { x \rightarrow \infty } \frac { 6 } { 5 x } (if it exists).

(Multiple Choice)
4.9/5
(42)

Find limx17x1+9x\lim _ { x \rightarrow \infty } \frac { 1 - 7 x } { 1 + 9 x } (if it exists).

(Multiple Choice)
4.8/5
(42)

Find the slope of the graph of the following function at the point (1,1)( - 1,1 ) . 3x223 x ^ { 2 } - 2

(Multiple Choice)
4.7/5
(29)

Consider the graph of the function and approximate limx0sin(8x)x\lim _ { x \rightarrow 0 } \frac { \sin ( - 8 x ) } { x } , if it exists.  Consider the graph of the function and approximate  \lim _ { x \rightarrow 0 } \frac { \sin ( - 8 x ) } { x } , if it exists.

(Multiple Choice)
4.7/5
(30)

Find the following limit of the sequence as nn approaches infinity, if it exists. an=1n(n+3n[n(n+1)5])a _ { n } = \frac { 1 } { n } \left( n + \frac { 3 } { n } \left[ \frac { n ( n + 1 ) } { 5 } \right] \right)

(Multiple Choice)
4.9/5
(39)

Find the following limit, if it exists. limx393x2x23+x\lim _ { x \rightarrow - 3 } \frac { 9 - 3 x - 2 x ^ { 2 } } { 3 + x }

(Multiple Choice)
4.9/5
(29)

Determine any points on the graph of the following function at which the tangent line is horizontal. f(x)=x2+6x8f ( x ) = x ^ { 2 } + 6 x - 8

(Multiple Choice)
4.8/5
(31)

Use the limit process to find the slope of the graph of 6x4x26 x - 4 x ^ { 2 } at (7,154)( 7 , - 154 ) .

(Multiple Choice)
4.8/5
(34)

Use the figure below to approximate the slope of the curve at the point (x,y)( x , y ) .  Use the figure below to approximate the slope of the curve at the point  ( x , y ) .

(Multiple Choice)
4.8/5
(28)

Use the first six terms to predict the limit of the sequence an=5n3n3+3a _ { n } = \frac { 5 n ^ { 3 } } { n ^ { 3 } + 3 } (assume nn begins with 1 ).

(Multiple Choice)
4.8/5
(39)

Consider the following graph of the function and approximate limx0e2x1x\lim _ { x \rightarrow 0 } \frac { e ^ { - 2 x } - 1 } { x } , if it exists.  Consider the following graph of the function and approximate  \lim _ { x \rightarrow 0 } \frac { e ^ { - 2 x } - 1 } { x } , if it exists.

(Multiple Choice)
4.8/5
(30)

The cost function for a certain model of a digital camera given by C=13.50x+48,950C = 13.50 x + 48,950 , where CC is the cost (in dollars) and xx is the number of cameras produced. Find the average cost per unit when x=200x = 200 . Round your answer to the nearest cent.

(Multiple Choice)
4.7/5
(35)

. Find limy015+y15y\lim _ { y \rightarrow 0 } \frac { \sqrt { 15 + y } - \sqrt { 15 } } { y }

(Multiple Choice)
4.9/5
(37)

Use the graph to find limx11x+1\lim _ { x \rightarrow - 1 } \frac { 1 } { x + 1 } , if it exists.  Use the graph to find  \lim _ { x \rightarrow - 1 } \frac { 1 } { x + 1 } , if it exists.

(Multiple Choice)
4.9/5
(47)

Use the limit process to find the slope of the graph of the following function at the point (5,27)( 5 , - 27 ) . g(x)=74xg ( x ) = - 7 - 4 x

(Multiple Choice)
4.8/5
(18)

Use asymptotes to match f(x)=4x2x2+1f ( x ) = \frac { 4 x ^ { 2 } } { x ^ { 2 } + 1 } with its graph.

(Multiple Choice)
4.9/5
(35)

Complete the table and numerically estimate the limit as xx approaches infinity for f(x)=xx2+4f ( x ) = x - \sqrt { x ^ { 2 } + 4 } . x 1 1 1 1 1 1 1 f(x)

(Multiple Choice)
4.8/5
(33)

Find limx6x+7x2\lim _ { x \rightarrow 6 } \frac { \sqrt { x + 7 } } { x - 2 } by direct substitution.

(Multiple Choice)
4.7/5
(39)
Showing 21 - 40 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)