Exam 11: Limits and an Introduction to Calculus

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find limx0xx+33\lim _ { x \rightarrow 0 ^ { - } } \frac { x } { \sqrt { x + 3 } - \sqrt { 3 } }

(Multiple Choice)
4.9/5
(32)

Use the limit process to find the slope of the graph of the following function at the point (3,19)( 3 , - 19 ) . g(x)=103xg ( x ) = - 10 - 3 x

(Multiple Choice)
4.8/5
(34)

Complete the table and use the result to estimate limx5(2x+4)\lim _ { x \rightarrow 5 } ( 2 x + 4 ) numerically. x 4.9 4.99 4.999 5 5.001 5.01 5.1 f(x) ?

(Multiple Choice)
4.8/5
(33)

Use the derivative of f(x)=3x3+9xf ( x ) = 3 x ^ { 3 } + 9 x to determine any points on the graph of f(x)f ( x ) at which the tangent line is horizontal.

(Multiple Choice)
4.8/5
(38)

If If f(x)=3x24xf ( x ) = - 3 x ^ { 2 } - 4 x , find the following limit, if it exists. limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h }

(Multiple Choice)
4.7/5
(35)

Use the limit process to find the slope of the graph of 4x8x24 x - 8 x ^ { 2 } at (3,60)( 3 , - 60 ) .

(Multiple Choice)
4.9/5
(36)

Use the function below and its derivative to determine any points on the graph of ff at which the tangent line is horizontal. f(x)=3x4+6x2,f(x)=12x3+12xf ( x ) = - 3 x ^ { 4 } + 6 x ^ { 2 } , f ^ { \prime } ( x ) = - 12 x ^ { 3 } + 12 x

(Multiple Choice)
4.8/5
(28)

Find the following limit. limx43x2+3x+1\lim _ { x \rightarrow - 4 } 3 x ^ { 2 } + 3 x + 1

(Multiple Choice)
4.9/5
(33)

Use the first six terms to predict the limit of the sequence an=5n3+8n+3a _ { n } = \frac { 5 n ^ { 3 } + 8 } { n + 3 } (assume nn begins with 1).

(Multiple Choice)
5.0/5
(29)

Find limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } for f(x)=8xf ( x ) = 8 - x

(Multiple Choice)
5.0/5
(45)

Find limt3t327t3\lim _ { t \rightarrow 3 } \frac { t ^ { 3 } - 27 } { t - 3 } .

(Multiple Choice)
4.8/5
(36)

Graph f(x)={3x+2x<3x4x3f ( x ) = \left\{ \begin{array} { l c } 3 x + 2 & x < - 3 \\ x - 4 & x \geq - 3 \end{array} \right. and find the limit of f(x)f ( x ) as xx approaches 3- 3  Graph  f ( x ) = \left\{ \begin{array} { l c } 3 x + 2 & x < - 3 \\ x - 4 & x \geq - 3 \end{array} \right.  and find the limit of  f ( x )  as  x  approaches  - 3

(Multiple Choice)
4.9/5
(34)

Find limx[x(5+x)2+7]\lim _ { x \rightarrow - \infty } \left[ \frac { x } { ( 5 + x ) ^ { 2 } } + 7 \right] (if it exists).

(Multiple Choice)
4.8/5
(30)

Consider the graph of the function and approximate limx0sin(8x)x\lim _ { x \rightarrow 0 } \frac { \sin ( 8 x ) } { x } , if it exists.  Consider the graph of the function and approximate  \lim _ { x \rightarrow 0 } \frac { \sin ( 8 x ) } { x } , if it exists.

(Multiple Choice)
4.8/5
(31)

Use the figure below to approximate the slope of the curve at the point (x,y)( x , y ) .  Use the figure below to approximate the slope of the curve at the point  ( x , y ) .

(Multiple Choice)
4.9/5
(37)

Estimate the following limit numerically, if it exists. limx1x1x2+4x5\lim _ { x \rightarrow 1 } \frac { x - 1 } { x ^ { 2 } + 4 x - 5 }

(Multiple Choice)
4.8/5
(34)

Use the graph to find limx34x236x3\lim _ { x \rightarrow 3 } \frac { 4 x ^ { 2 } - 36 } { x - 3 } .  Use the graph to find  \lim _ { x \rightarrow 3 } \frac { 4 x ^ { 2 } - 36 } { x - 3 } .

(Multiple Choice)
4.8/5
(36)

Find the following limit, if it exists. limx6x243x2\lim _ { x \rightarrow \infty } \frac { 6 x ^ { 2 } - 4 } { - 3 - x ^ { 2 } }

(Multiple Choice)
4.8/5
(32)

Use the function below and its derivative to determine any points on the graph of ff at which the tangent line is horizontal. f(x)=2x4+4x2,f(x)=8x3+8xf ( x ) = - 2 x ^ { 4 } + 4 x ^ { 2 } , f ^ { \prime } ( x ) = - 8 x ^ { 3 } + 8 x

(Multiple Choice)
4.8/5
(42)

Use the limit process to find the slope of the graph of x+4\sqrt { x + 4 } at (5,3)( 5,3 ) .

(Multiple Choice)
4.7/5
(35)
Showing 61 - 80 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)