Exam 11: Limits and an Introduction to Calculus

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Determine any points on the graph of the following function at which the tangent line is horizontal. f(x)=x2+8x8f ( x ) = x ^ { 2 } + 8 x - 8

(Multiple Choice)
4.9/5
(40)

Find limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } for f(x)=x7f ( x ) = \sqrt { x - 7 } .

(Multiple Choice)
5.0/5
(35)

Find the following limit, if it exists. limx2x8\lim _ { x \rightarrow - 2 } x ^ { 8 }

(Multiple Choice)
4.8/5
(32)

Find limx7x8x2+12x+27\lim _ { x \rightarrow 7 } \frac { x - 8 } { x ^ { 2 } + 12 x + 27 } by direct substitution.

(Multiple Choice)
4.9/5
(38)

Find limx3[g(x)f(x)]\lim _ { x \rightarrow 3 } [ g ( x ) - f ( x ) ] for f(x)=4x3f ( x ) = 4 x ^ { 3 } and g(x)=x2+95x2g ( x ) = \frac { \sqrt { x ^ { 2 } + 9 } } { 5 x ^ { 2 } } .

(Multiple Choice)
4.8/5
(37)

Consider the following graph of the function and approximate limx0e4x1x\lim _ { x \rightarrow 0 } \frac { e ^ { - 4 x } - 1 } { x } , if it exists.  Consider the following graph of the function and approximate  \lim _ { x \rightarrow 0 } \frac { e ^ { - 4 x } - 1 } { x } , if it exists.

(Multiple Choice)
4.8/5
(38)

Use the limit process to find the area of the region between f(x)=14(x2+4x)f ( x ) = \frac { 1 } { 4 } \left( x ^ { 2 } + 4 x \right) and the xx -axis on the interval [1,4][ 1,4 ] .

(Multiple Choice)
4.7/5
(41)

Using the summation formulas and properties, evaluate the following expression. i=1308\sum _ { i = 1 } ^ { 30 } 8

(Multiple Choice)
4.8/5
(37)

Find limx[x(7+x)26]\lim _ { x \rightarrow - \infty } \left[ \frac { x } { ( 7 + x ) ^ { 2 } } - 6 \right] (if it exists).

(Multiple Choice)
4.9/5
(31)

Evaluate j=115(j35j2)\sum _ { j = 1 } ^ { 15 } \left( j ^ { 3 } - 5 j ^ { 2 } \right) using the summation formulas and properties.

(Multiple Choice)
4.8/5
(26)

Find limx3[g(x)f(x)]\lim _ { x \rightarrow 3 } [ g ( x ) - f ( x ) ] for f(x)=3x3f ( x ) = 3 x ^ { 3 } and g(x)=x2+26x2g ( x ) = \frac { \sqrt { x ^ { 2 } + 2 } } { 6 x ^ { 2 } } .

(Multiple Choice)
4.9/5
(28)

Use the graph to find limx34x236x3\lim _ { x \rightarrow 3 } \frac { 4 x ^ { 2 } - 36 } { x - 3 }  Use the graph to find  \lim _ { x \rightarrow 3 } \frac { 4 x ^ { 2 } - 36 } { x - 3 }

(Multiple Choice)
5.0/5
(36)

Complete the table and use the result to estimate limx3x+3x2x12\lim _ { x \rightarrow - 3 } \frac { x + 3 } { x ^ { 2 } - x - 12 } numerically. x -3.1 -3.01 -3.001 -3 -2.999 -2.99 -2.9 f(x) ?

(Multiple Choice)
4.8/5
(33)

Find an equation of the tangent line to the graph of the following function at the point (1,5)( - 1 , - 5 ) . 3x22- 3 x ^ { 2 } - 2

(Multiple Choice)
4.7/5
(35)

The cost function for a certain model of a digital camera given by C=12.00x+48,450C = 12.00 x + 48,450 , where CC is the cost (in dollars) and xx is the number of cameras produced. Find the average cost per unit when x=100x = 100 . Round your answer to the nearest cent.

(Multiple Choice)
4.9/5
(38)

Find limx[x(5+x)2+8]\lim _ { x \rightarrow - \infty } \left[ \frac { x } { ( 5 + x ) ^ { 2 } } + 8 \right] (if it exists).

(Multiple Choice)
5.0/5
(31)

Use the derivative of f(x)=5x3+15xf ( x ) = 5 x ^ { 3 } + 15 x to determine any points on the graph of f(x)f ( x ) at which the tangent line is horizontal.

(Multiple Choice)
4.9/5
(36)

Find the following limit, if it exists. limx3x8\lim _ { x \rightarrow - 3 } x ^ { 8 }

(Multiple Choice)
4.8/5
(38)

Use the graph to find limx03sin(π3x)\lim _ { x \rightarrow 0 } 3 \sin \left( \frac { \pi } { 3 x } \right) .  Use the graph to find  \lim _ { x \rightarrow 0 } 3 \sin \left( \frac { \pi } { 3 x } \right) .

(Multiple Choice)
4.8/5
(30)

Find the derivative of f(x)=7x29x+4f ( x ) = 7 x ^ { 2 } - 9 x + 4 .

(Multiple Choice)
4.7/5
(32)
Showing 101 - 120 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)