Exam 11: Limits and an Introduction to Calculus

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the graph below to find limx10x+10x+10\lim _ { x \rightarrow - 10 } \frac { | x + 10 | } { x + 10 } , if it exists.  Use the graph below to find  \lim _ { x \rightarrow - 10 } \frac { | x + 10 | } { x + 10 } , if it exists.

(Multiple Choice)
4.7/5
(37)

Find the derivative of f(x)=4x2+2x+3f ( x ) = 4 x ^ { 2 } + 2 x + 3 .

(Multiple Choice)
5.0/5
(37)

Use the figure below to approximate the slope of the curve at the point (x,y)( x , y ) .  Use the figure below to approximate the slope of the curve at the point  ( x , y ) .

(Multiple Choice)
4.8/5
(37)

Evaluate j=110(j34j2)\sum _ { j = 1 } ^ { 10 } \left( j ^ { 3 } - 4 j ^ { 2 } \right) using the summation formulas and properties.

(Multiple Choice)
4.9/5
(34)

Use the limit process to find the slope of the graph of x+12\sqrt { x + 12 } at (4,4)( 4,4 ) .

(Multiple Choice)
4.8/5
(32)

Find limx64xx+4\lim _ { x \rightarrow 6 } \frac { 4 x } { \sqrt { x + 4 } } by direct substitution.

(Multiple Choice)
4.8/5
(35)

Find limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } for f(x)=46xf ( x ) = 4 - 6 x .

(Multiple Choice)
4.8/5
(38)

Find limx3[g(x)f(x)]\lim _ { x \rightarrow 3 } [ g ( x ) - f ( x ) ] for f(x)=3x3f ( x ) = 3 x ^ { 3 } and g(x)=x2+25x2g ( x ) = \frac { \sqrt { x ^ { 2 } + 2 } } { 5 x ^ { 2 } } .

(Multiple Choice)
5.0/5
(35)

Find the following limit of the sequence as nn approaches infinity, if it exists. an=1n(n+4n[n(n+1)6])a _ { n } = \frac { 1 } { n } \left( n + \frac { 4 } { n } \left[ \frac { n ( n + 1 ) } { 6 } \right] \right)

(Multiple Choice)
4.9/5
(34)

The cost function for a certain graphing calculator is given by C=11.35x+53,000C = 11.35 x + 53,000 where CC is in dollars and xx is the number of calculators produced. a. Write a model for the average cost per unit produced. b. Find the average cost per unit when x=900x = 900 . c. Determine the limit of the average cost function as xx approaches \infty .

(Essay)
4.9/5
(29)

Find limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } for f(x)=2+6xf ( x ) = 2 + 6 x .

(Multiple Choice)
4.9/5
(40)

Find limx7x+3x3\lim _ { x \rightarrow 7 } \frac { \sqrt { x + 3 } } { x - 3 } by direct substitution.

(Multiple Choice)
4.8/5
(36)

Find an equation of the tangent line to the graph of the following function at the point (3,30)( 3 , - 30 ) . 3x23- 3 x ^ { 2 } - 3

(Multiple Choice)
4.7/5
(36)

Find limx16x1+8x\lim _ { x \rightarrow \infty } \frac { 1 - 6 x } { 1 + 8 x } (if it exists).

(Multiple Choice)
4.9/5
(33)

Use the graph to find limx34x236x3\lim _ { x \rightarrow 3 } \frac { 4 x ^ { 2 } - 36 } { x - 3 } .  Use the graph to find  \lim _ { x \rightarrow 3 } \frac { 4 x ^ { 2 } - 36 } { x - 3 } .

(Multiple Choice)
4.7/5
(38)

Use the function below and its derivative to determine any points on the graph of ff at which the tangent line is horizontal. f(x)=3x46x2,f(x)=12x312xf ( x ) = 3 x ^ { 4 } - 6 x ^ { 2 } , f ^ { \prime } ( x ) = 12 x ^ { 3 } - 12 x

(Multiple Choice)
4.8/5
(30)

Graph f(x)={4x+3x<0x+3x0f ( x ) = \left\{ \begin{array} { l c } 4 x + 3 & x < 0 \\ x + 3 & x \geq 0 \end{array} \right. and find the limit of f(x)f ( x ) as xx approaches 0 .  Graph  f ( x ) = \left\{ \begin{array} { l c } 4 x + 3 & x < 0 \\ x + 3 & x \geq 0 \end{array} \right.  and find the limit of  f ( x )  as  x  approaches 0 .

(Multiple Choice)
4.9/5
(37)

Use the figure below to approximate the slope of the curve at the point (x,y)( x , y ) .  Use the figure below to approximate the slope of the curve at the point  ( x , y ) .

(Multiple Choice)
4.9/5
(38)

Find the slope of the graph of the following function at the point (1,3)( 1 , - 3 ) . x22- x ^ { 2 } - 2

(Multiple Choice)
4.8/5
(37)

Find limx0xx+1515\lim _ { x \rightarrow 0 ^ { - } } \frac { x } { \sqrt { x + 15 } - \sqrt { 15 } }

(Multiple Choice)
4.8/5
(28)
Showing 41 - 60 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)