Exam 2: Basic Structures: Sets, Functions, Sequences, Sums, Matrices

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

 Show that the set of odd positive integers greater than 3 is countable. \text { Show that the set of odd positive integers greater than } 3 \text { is countable. }

Free
(Essay)
4.9/5
(40)
Correct Answer:
Verified

The function f(n)=2n+3f ( n ) = 2 n + 3 is a one-to-one correspondence from the set of positive integers to the set of odd positive integers greater than 3 . Hence this set is countable.

 Let A,B, and C be sets. Prove or disprove that A(BC)=(AB)(AC)\text { Let } A , B \text {, and } C \text { be sets. Prove or disprove that } A - ( B \cap C ) = ( A - B ) \cup ( A - C ) \text {. }

Free
(Essay)
4.7/5
(35)
Correct Answer:
Verified

We see that A(BC)=ABC=A(BˉCˉ)=(ABˉ)(ACˉ)=(AB)(AC)A - ( B \cap C ) = A \cap \overline { B \cap C } = A \cap ( \bar { B } \cup \bar { C } ) = ( A \cap \bar { B } ) \cup ( A \cap \bar { C } ) = ( A - B ) \cup ( A - C ) . These equalities follow from the definition of the difference of two sets, De Morgan's law, the distributive law for intersection over union, and the definition of the difference of two sets, respectively.

 Prove or disprove that AB=BA whenever A and B are 2×2 matrices. \text { Prove or disprove that } \boldsymbol { A } \boldsymbol { B } = \boldsymbol { B } \boldsymbol { A } \text { whenever } \boldsymbol { A } \text { and } \boldsymbol { B } \text { are } 2 \times 2 \text { matrices. }

Free
(Essay)
4.8/5
(38)
Correct Answer:
Verified

This is false. Counterexamples are easy to find. For instance, let A=[0020]\boldsymbol { A } = \left[ \begin{array} { l l } 0 & 0 \\ 2 & 0 \end{array} \right] and B=[1010]\boldsymbol { B } = \left[ \begin{array} { l l } 1 & 0 \\ 1 & 0 \end{array} \right] . Then AB=[0020]\boldsymbol { A } \boldsymbol { B } = \left[ \begin{array} { l l } 0 & 0 \\ 2 & 0 \end{array} \right] while BA=[0000]\boldsymbol { B } \boldsymbol { A } = \left[ \begin{array} { l l } 0 & 0 \\ 0 & 0 \end{array} \right]

Consider the function f(n)=2n/2f ( n ) = 2 \lfloor n / 2 \rfloor from Z\mathbf { Z } to Z\mathbf { Z } . Is this function one-to-one? Is this function onto? Justify your answers.

(Essay)
4.9/5
(35)

 Find j=11002j+5 and j=51003j\text { Find } \sum _ { j = 1 } ^ { 100 } 2 j + 5 \text { and } \sum _ { j = 5 } ^ { 100 } 3 ^ { j }

(Essay)
4.9/5
(30)
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)