Exam 5: Induction and Recursion

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

 Prove that j=n2n1(2j+1)=3n2 whenever n is a positive integer. \text { Prove that } \sum _ { j = n } ^ { 2 n - 1 } ( 2 j + 1 ) = 3 n ^ { 2 } \text { whenever } n \text { is a positive integer. }

Free
(Essay)
4.9/5
(42)
Correct Answer:
Verified

The basis step holds since j=11(2j+1)=3=312\sum _ { j = 1 } ^ { 1 } ( 2 j + 1 ) = 3 = 3 \cdot 1 ^ { 2 } . For the inductive step assume that j=k2k1(2j+1)=3k2\sum _ { j = k } ^ { 2 k - 1 } ( 2 j + 1 ) = 3 k ^ { 2 } . It follows that j=k+12(k+1)1(2j+1)=j=k2k1(2j+1)(2k+1)+(4k+1)+(4k+3)=3k2+6k+3=3(k+1)2\sum _ { j = k + 1 } ^ { 2 ( k + 1 ) - 1 } ( 2 j + 1 ) = \sum _ { j = k } ^ { 2 k - 1 } ( 2 j + 1 ) - ( 2 k + 1 ) + ( 4 k + 1 ) + ( 4 k + 3 ) = 3 k ^ { 2 } + 6 k + 3 = 3 ( k + 1 ) ^ { 2 } . This completes the proof.

 Describe a recursive algorithm for computing 32n where n is a nonnegative integer. \text { Describe a recursive algorithm for computing } 3 ^ { 2 ^ { n } } \text { where } n \text { is a nonnegative integer. }

Free
(Essay)
4.8/5
(34)
Correct Answer:
Verified

We can use the following recursive procedure. procedure x(n:x ( n : nonnegative integer ))
if n=0n = 0 then return 3
else return x(n1)x(n1)x ( n - 1 ) \cdot x ( n - 1 )

What is wrong with the following proof that every positive integer equals the next larger positive integer? "Proof." Let P(n)P ( n ) be the proposition that n=n+1n = n + 1 . Assume that P(k)P ( k ) is true, so that k=k+1k = k + 1 . Add 1 to both sides of this equation to obtain k+1=k+2k + 1 = k + 2 . Since this is the statement P(k+1)P ( k + 1 ) , it follows that P(n)P ( n ) is true for all positive integers nn .

Free
(Short Answer)
4.9/5
(42)
Correct Answer:
Verified

The error is that no basis step has been done.

Suppose that the only currency were 3-dollar bills and 10-dollar bills. Show that every amount greater than 17 dollars could be made from a combination of these bills.

(Essay)
4.8/5
(33)

 Suppose that {an} is defined recursively by an=an121 and that a0=2. Find a3 and a4\text { Suppose that } \left\{ a _ { n } \right\} \text { is defined recursively by } a _ { n } = a _ { n - 1 } ^ { 2 } - 1 \text { and that } a _ { 0 } = 2 \text {. Find } a _ { 3 } \text { and } a _ { 4 } \text {. }

(Essay)
5.0/5
(33)

 Use mathematical induction to show that j=0n(j+1)=(n+1)(n+2)/2 whenever n is a nonnegative integer. \text { Use mathematical induction to show that } \sum _ { j = 0 } ^ { n } ( j + 1 ) = ( n + 1 ) ( n + 2 ) / 2 \text { whenever } n \text { is a nonnegative integer. }

(Essay)
4.8/5
(39)

Give a recursive algorithm for computing na using addition, where n is a positive integer and a is a real

(Essay)
4.7/5
(36)

Use mathematical induction to show that nn lines in the plane passing through the same point divide the plane into 2n2 n parts.

(Essay)
4.7/5
(27)

 Show that 3n<n ! whenever n is an integer with n7\text { Show that } 3 ^ { n } < n \text { ! whenever } n \text { is an integer with } n \geq 7 \text {. }

(Essay)
4.9/5
(28)

 Let a1=2,a2=9, and an=2an1+3an2 for n3. Show that an3n for all positive integers n\text { Let } a _ { 1 } = 2 , a _ { 2 } = 9 \text {, and } a _ { n } = 2 a _ { n - 1 } + 3 a _ { n - 2 } \text { for } n \geq 3 \text {. Show that } a _ { n } \leq 3 ^ { n } \text { for all positive integers } n \text {. }

(Essay)
4.9/5
(43)
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)