Exam 11: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

A recursion formula and the initial term(s) of a sequence are given. Write out the first five terms of the sequence. - a1=2,an+1=(1)nana_{1}=2, a_{n+1}=(-1)^{n} a_{n}

Free
(Multiple Choice)
4.9/5
(40)
Correct Answer:
Verified

A

Find the first four terms of the binomial series for the given function. - (1x7)1/3\left( 1 - \frac { x } { 7 } \right) ^ { 1 / 3 }

Free
(Multiple Choice)
4.8/5
(32)
Correct Answer:
Verified

C

Determine if the series converges or diverges; if the series converges, find its sum. - n=17n+110n1\sum _ { n = 1 } ^ { \infty } \frac { 7 ^ { n + 1 } } { 10 ^ { n - 1 } }

Free
(Multiple Choice)
4.9/5
(38)
Correct Answer:
Verified

B

Provide an appropriate response. -If sinx\sin x is replaced by xx36x - \frac { x ^ { 3 } } { 6 } and x<0.5| x | < 0.5 , what estimate can be made of the error?

(Multiple Choice)
4.8/5
(42)

Use the limit comparison test to determine if the series converges or diverges. - n=139+8n(lnn)2\sum _ { n = 1 } ^ { \infty } \frac { 3 } { 9 + 8 n ( \ln n ) ^ { 2 } }

(Multiple Choice)
4.9/5
(32)

Find the infinite sum accurate to three decimal places. - n=12(1)n+13n\sum _ { n = 1 } ^ { \infty } \frac { 2 ( - 1 ) ^ { n + 1 } } { 3 ^ { n } }

(Multiple Choice)
4.8/5
(38)

Find the series' radius of convergence. - n=2x4n(lnn)4\sum _ { n = 2 } ^ { \infty } \frac { x ^ { 4 n } } { ( \ln n ) ^ { 4 } }

(Multiple Choice)
4.7/5
(37)

Solve the problem. -A ball is dropped from a height of 21 m21 \mathrm {~m} and always rebounds 13\frac { 1 } { 3 } of the height of the previous drop. How far does it travel (up and down) before coming to rest?

(Multiple Choice)
4.8/5
(42)

Find the first four terms of the binomial series for the given function. - (18x2)1/2\left( 1 - 8 x ^ { 2 } \right) ^ { - 1 / 2 }

(Multiple Choice)
4.9/5
(41)

 Determine if the series n=1an defined by the formula converges or diverges. \text { Determine if the series } \sum _ { n = 1 } ^ { \infty } a _ { n } \text { defined by the formula converges or diverges. } - a1=19,an+1=ann\mathrm { a } _ { 1 } = \frac { 1 } { 9 } , \mathrm { a } _ { \mathrm { n } + 1 } = \sqrt [ n ] { \mathrm { a } _ { \mathrm { n } } }

(Multiple Choice)
4.8/5
(34)

Provide an appropriate response. -For approximately what values of xx can sinx\sin x be replaced by xx36+x5120x - \frac { x ^ { 3 } } { 6 } + \frac { x ^ { 5 } } { 120 } with an error of magnitude no greater than 5×106?5 \times 10 ^ { - 6 } ?

(Multiple Choice)
4.7/5
(40)

By calculating an appropriate number of terms, determine if the series converges or diverges. If it converges, find the limit LL and the smallest integer NN such that anL<0.01\left| a _ { n } - L \right| < 0.01 for nNn \geq N ; otherwise indicate divergence. - an=cosna _ { n } = \cos n

(Multiple Choice)
4.8/5
(43)

Solve the problem. -  If an is a convergent series of nonnegative terms, what can be said about  na n ? \text { If } \sum a _ { n } \text { is a convergent series of nonnegative terms, what can be said about } \sum \text { na } { } _ { n } \text { ? }

(Multiple Choice)
4.7/5
(36)

Find the interval of convergence of the series. - n=1(x8)nln(n+8)\sum _ { n = 1 } ^ { \infty } \frac { ( x - 8 ) ^ { n } } { \ln ( n + 8 ) }

(Multiple Choice)
4.8/5
(33)

Find the first four terms of the binomial series for the given function. - (1+4x)1/2( 1 + 4 x ) ^ { - 1 / 2 }

(Multiple Choice)
4.7/5
(42)

Find the limit of the sequence if it converges; otherwise indicate divergence. - an=5nnna _ { n } = \sqrt [ n ] { 5 ^ { n } \cdot n }

(Multiple Choice)
4.9/5
(37)

Find the Maclaurin series for the given function. - e4xe ^ { 4 x }

(Multiple Choice)
4.8/5
(37)

Express the number as the ratio of two integers. -0.8333333 . . .

(Multiple Choice)
4.7/5
(46)

Use power series operations to find the Taylor series at x = 0 for the given function. - x713x\frac { x ^ { 7 } } { 1 - 3 x }

(Multiple Choice)
4.8/5
(34)

Find the values of x for which the geometric series converges. - n=0(1)n61(8+sinx)n\sum _ { \mathrm { n } = 0 } ^ { \infty } \frac { ( - 1 ) ^ { \mathrm { n } } } { 6 } \frac { 1 } { ( 8 + \sin \mathrm { x } ) ^ { \mathrm { n } } }

(Multiple Choice)
4.8/5
(35)
Showing 1 - 20 of 473
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)