Exam 5: Applications of Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Provide an appropriate response. -Decide if the statement is true or false. If false, explain. The points (1,1)( - 1 , - 1 ) and (1,1)( 1,1 ) lie on the graph of f(x)=1xf ( x ) = \frac { 1 } { x } . Therefore, the Mean Value Theorem says that there exists some value x=cx = c on (1,1)( - 1,1 ) for which f(x)=1(1)1(1)=1f ^ { \prime } ( x ) = \frac { 1 - ( - 1 ) } { 1 - ( - 1 ) } = 1

Free
(True/False)
4.8/5
(33)
Correct Answer:
Verified

False

Estimate the limit by graphing the function for an appropriate domain. Confirm your estimate by using L'Hopital's rule. Show each step of your calculation. -Find the error in the following incorrect application of L'Hôpital's Rule. limx0sinxx+x2=limx0cosx1+2x=limx0sinx2=0\lim _ { x \rightarrow 0 } \frac { \sin x } { x + x ^ { 2 } } = \lim _ { x \rightarrow 0 } \frac { \cos x } { 1 + 2 x } = \lim _ { x \rightarrow 0 } \frac { - \sin x } { 2 } = 0 \text {. }

Free
(Essay)
4.7/5
(33)
Correct Answer:
Verified

L'Hopital's Rule cannot be applied to limx0cosx1+2x\lim _ { x \rightarrow 0 } \frac { \cos x } { 1 + 2 x } because it corresponds to 11\frac { 1 } { 1 } which is not an indeterminate form.

Find an antiderivative of the given function. - 47x6/7\frac { 4 } { 7 } x ^ { 6 / 7 }

Free
(Multiple Choice)
4.7/5
(30)
Correct Answer:
Verified

B

Solve the initial value problem. - dydx=31+x2+51x2,y(0)=6\frac { d y } { d x } = \frac { 3 } { 1 + x ^ { 2 } } + \frac { 5 } { \sqrt { 1 - x ^ { 2 } } } , \quad y ( 0 ) = 6

(Multiple Choice)
4.7/5
(30)

Solve the problem. -For x>0x > 0 , sketch a curve y=f(x)y = f ( x ) that has f(1)=0f ( 1 ) = 0 and f(x)=1xf ^ { \prime } ( x ) = - \frac { 1 } { x } . Can anything be said about the concavity of such a curve? Give reasons for your answer.

(Essay)
4.8/5
(37)

Use l'H^opital's rule to find the limit. - limx7x25x+13x2+3x8\lim _ { x \rightarrow \infty } \frac { 7 x ^ { 2 } - 5 x + 1 } { 3 x ^ { 2 } + 3 x - 8 }

(Multiple Choice)
4.9/5
(45)

Answer the problem. -Use the following function and a graphing calculator to answer the questions. f(x)=3x+0.9sinx,[0,2π]f ( x ) = \sqrt { 3 x } + 0.9 \sin x , [ 0,2 \pi ] a). Plot the function over the interval to see its general behavior there. Sketch the graph below.  Answer the problem. -Use the following function and a graphing calculator to answer the questions.  f ( x ) = \sqrt { 3 x } + 0.9 \sin x , [ 0,2 \pi ]  a). Plot the function over the interval to see its general behavior there. Sketch the graph below.    b). Find the interior points where f = 0 (you may need to use the numerical equation solver to approximate a solution). You may wish to plot f as well. List the points as ordered pairs (x, y). c). Find the interior points where f does not exist. List the points as ordered pairs (x, y). d). Evaluate the function at the endpoints and list these points as ordered pairs (x, y). e). Find the function's absolute extreme values on the interval and identify where they occur. b). Find the interior points where f = 0 (you may need to use the numerical equation solver to approximate a solution). You may wish to plot f as well. List the points as ordered pairs (x, y). c). Find the interior points where f does not exist. List the points as ordered pairs (x, y). d). Evaluate the function at the endpoints and list these points as ordered pairs (x, y). e). Find the function's absolute extreme values on the interval and identify where they occur.

(Essay)
4.8/5
(36)

Solve the problem. -A particle moves on a coordinate line with acceleration a=d2s/dt2=(5/t)+9ta = d ^ { 2 } s / d t ^ { 2 } = ( 5 / \sqrt { t } ) + 9 \sqrt { t } , subject to the conditions that ds/dt=3\mathrm { ds } / \mathrm { dt } = 3 and s=1\mathrm { s } = 1 when t=1\mathrm { t } = 1 . Find the velocity v=ds/dt\mathrm { v } = \mathrm { ds } / \mathrm { dt } in terms of t\mathrm { t } and the position ss in terms of tt .

(Multiple Choice)
4.7/5
(39)

Answer each question appropriately. -Suppose the velocity of a body moving along the s-axis is dsdt=9.8t3\frac { \mathrm { ds } } { \mathrm { dt } } = 9.8 \mathrm { t } - 3 . Find the body's displacement over the time interval from t=3t = 3 to t=7t = 7 given that s=3s = 3 when t=0t = 0 .

(Multiple Choice)
4.8/5
(39)

Solve the problem. -A rocket lifts off the surface of Earth with a constant acceleration of 30 m/sec230 \mathrm {~m} / \mathrm { sec } ^ { 2 } . How fast will the rocket be going 2.52.5 minutes later?

(Multiple Choice)
4.8/5
(31)

Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval. - f(θ)={cosθθ,πθ<00,θ=0f ( \theta ) = \left\{ \begin{array} { c l } \frac { \cos \theta } { \theta } , & - \pi \leq \theta < 0 \\0 , & \theta = 0\end{array} \right.

(True/False)
4.8/5
(37)

Use l'Hopital's Rule to evaluate the limit. - limxπ3cosx12xπ3\lim _ { x \rightarrow \frac { \pi } { 3 } } \frac { \cos x - \frac { 1 } { 2 } } { x - \frac { \pi } { 3 } }

(Multiple Choice)
4.9/5
(37)

Find the open intervals on which the function is increasing and decreasing. Identify the function's local and absolute extreme values, if any, saying where they occur. -Find the open intervals on which the function is increasing and decreasing. Identify the function's local and absolute extreme values, if any, saying where they occur. -

(Multiple Choice)
4.9/5
(44)

Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval. - s(t)=t(3t),[1,5]s ( t ) = \sqrt { t ( 3 - t ) } , \quad [ - 1,5 ]

(True/False)
4.9/5
(34)

Find the absolute extreme values of the function on the interval. - f(θ)=sin(θ+π2),0θ7π4f ( \theta ) = \sin \left( \theta + \frac { \pi } { 2 } \right) , 0 \leq \theta \leq \frac { 7 \pi } { 4 }

(Multiple Choice)
4.8/5
(36)

Graph the function, then find the extreme values of the function on the interval and indicate where they occur. -Graph the function, then find the extreme values of the function on the interval and indicate where they occur. -

(Multiple Choice)
4.9/5
(36)

Determine from the graph whether the function has any absolute extreme values on the interval [a, b]. -Determine from the graph whether the function has any absolute extreme values on the interval [a, b]. -

(Multiple Choice)
4.9/5
(47)

Use l'Hopital's Rule to evaluate the limit. - limxx2+2x+14x3+2x2+9\lim _ { x \rightarrow \infty }\frac { x ^ { 2 } + 2 x + 14 } { x ^ { 3 } + 2 x ^ { 2 } + 9 }

(Multiple Choice)
4.8/5
(35)

Find the limit. - limxθ+xtan(3π2+x)\lim _ { x \rightarrow \theta ^ { + } } x \tan \left( \frac { 3 \pi } { 2 } + x \right)

(Multiple Choice)
4.8/5
(36)

Find all possible functions with the given derivative. - y=csc23θy ^ { \prime } = \csc ^ { 2 } 3 \theta

(Multiple Choice)
4.8/5
(33)
Showing 1 - 20 of 412
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)